tran.polar: Diffusive Transport in polar (r, theta) coordinates.

Description Usage Arguments Details Value References See Also Examples

Description

Estimates the transport term (i.e. the rate of change of a concentration due to diffusion) in a polar (r, theta) coordinate system

Usage

1
2
3
4
5
6
7
8
tran.polar (C, C.r.up = NULL, C.r.down = NULL, 
            C.theta.up = NULL, C.theta.down = NULL, 
            flux.r.up = NULL, flux.r.down = NULL, 
            flux.theta.up = NULL, flux.theta.down = NULL, 
            cyclicBnd = NULL, D.r = 1, D.theta = D.r, 
            r = NULL, theta = NULL, full.output = FALSE)

polar2cart (out, r, theta, x = NULL, y = NULL)

Arguments

C

concentration, expressed per unit volume, defined at the centre of each grid cell; Nr*Nteta matrix [M/L3].

C.r.up

concentration at upstream boundary in r(x)-direction; vector of length Nteta [M/L3].

C.r.down

concentration at downstream boundary in r(x)-direction; vector of length Nteta [M/L3].

C.theta.up

concentration at upstream boundary in theta-direction; vector of length Nr [M/L3].

C.theta.down

concentration at downstream boundary in theta-direction; vector of length Nr [M/L3].

flux.r.up

flux across the upstream boundary in r-direction, positive = INTO model domain; vector of length Ntheta [M/L2/T].

flux.r.down

flux across the downstream boundary in r-direction, positive = OUT of model domain; vector of length Ntheta [M/L2/T].

flux.theta.up

flux across the upstream boundary in theta-direction, positive = INTO model domain; vector of length Nr [M/L2/T].

flux.theta.down

flux across the downstream boundary in theta-direction, positive = OUT of model domain; vector of length Nr [M/L2/T].

cyclicBnd

If not NULL, the direction in which a cyclic boundary is defined, i.e. cyclicBnd = 1 for the r direction, cyclicBnd = 2 for the theta direction and cyclicBnd = c(1,2) for both the r and theta direction.

D.r

diffusion coefficient in r-direction, defined on grid cell interfaces. One value, a vector of length (Nr+1), a prop.1D list created by setup.prop.1D, or a (Nr+1)* Nteta matrix [L2/T].

D.theta

diffusion coefficient in theta-direction, defined on grid cell interfaces. One value, a vector of length (Ntheta+1), a prop.1D list created by setup.prop.1D, or a Nr*(Ntheta+1) matrix [L2/T].

r

position of adjacent cell interfaces in the r-direction. A vector of length Nr+1 [L].

theta

position of adjacent cell interfaces in the theta-direction. A vector of length Ntheta+1 [L]. Theta should be within [0,2 pi]

full.output

logical flag enabling a full return of the output (default = FALSE; TRUE slows down execution by 20 percent).

out

output as returned by tran.polar, and which is to be mapped from polar to cartesian coordinates

x

The cartesian x-coordinates to whicht the polar coordinates are to be mapped

y

The cartesian y-coordinates to whicht the polar coordinates are to be mapped

Details

tran.polar performs (simplified) transport in polar coordinates

The boundary conditions are either

This is also the order of priority. The cyclic boundary overrules the other. If fixed concentration, fixed flux, and cyclicBnd are NULL then the boundary is zero-gradient

A cyclic boundary condition has concentration and flux at upstream and downstream boundary the same.

polar2cart maps the polar coordinates to cartesian coordinates

If x and y is not provided, then it will create an (x,y) grid based on r : seq(-maxr, maxr, length.out=Nr), where maxr is the maximum value of r, and Nr is the number of elements in r.

Value

a list containing:

dC

the rate of change of the concentration C due to transport, defined in the centre of each grid cell, a Nr*Nteta matrix. [M/L3/T].

C.r.up

concentration at the upstream interface in r-direction. A vector of length Nteta [M/L3]. Only when full.output = TRUE.

C.r.down

concentration at the downstream interface in r-direction. A vector of length Nteta [M/L3]. Only when full.output = TRUE.

C.theta.up

concentration at the the upstream interface in theta-direction. A vector of length Nr [M/L3]. Only when full.output = TRUE.

C.theta.down

concentration at the downstream interface in theta-direction. A vector of length Nr [M/L3]. Only when full.output = TRUE.

r.flux

flux across the interfaces in x-direction of the grid cells. A (Nr+1)*Nteta matrix [M/L2/T]. Only when full.output = TRUE.

theta.flux

flux across the interfaces in y-direction of the grid cells. A Nr*(Nteta+1) matrix [M/L2/T]. Only when full.output = TRUE.

flux.r.up

flux across the upstream boundary in r-direction, positive = INTO model domain. A vector of length Nteta [M/L2/T].

flux.r.down

flux across the downstream boundary in r-direction, positive = OUT of model domain. A vector of length Nteta [M/L2/T].

flux.theta.up

flux across the upstream boundary in theta-direction, positive = INTO model domain. A vector of length Nr [M/L2/T].

flux.theta.down

flux across the downstream boundary in theta-direction, positive = OUT of model domain. A vector of length Nr [M/L2/T].

References

Soetaert and Herman, 2009. a practical guide to ecological modelling - using R as a simulation platform. Springer

See Also

tran.cylindrical, tran.spherical for a discretisation of 3-D transport equations in cylindrical and spherical coordinates

tran.1D, tran.2D, tran.3D

Examples

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
## =============================================================================
## Testing the functions
## =============================================================================
# Parameters
F        <- 100             # input flux [micromol cm-2 yr-1]
D        <- 400             # mixing coefficient [cm2 yr-1]

# Grid definition
r.N   <- 4     # number of cells in r-direction
theta.N <- 6   # number of cells in theta-direction
r.L <- 8       # domain size r-direction [cm]
r      <- seq(0, r.L,len = r.N+1)      # cell size r-direction [cm]
theta  <- seq(0, 2*pi,len = theta.N+1) # theta-direction - theta: from 0, 2pi
 
# Intial conditions 
C <- matrix(nrow = r.N, ncol = theta.N, data = 0)

# Boundary conditions: fixed concentration  
C.r.up       <- rep(1, times = theta.N)
C.r.down     <- rep(0, times = theta.N)
C.theta.up   <- rep(1, times = r.N)
C.theta.down <- rep(0, times = r.N)

# Concentration boundary conditions
tran.polar(C = C, D.r = D, D.theta = D, 
  r = r, theta = theta,
  C.r.up = C.r.up, C.r.down = C.r.down, 
  C.theta.up = C.theta.up, C.theta.down = C.theta.down)

# Flux boundary conditions
flux.r.up <- rep(200, times = theta.N)
flux.r.down <- rep(-200, times = theta.N)
flux.theta.up <- rep(200, times = r.N)
flux.theta.down <- rep(-200, times = r.N)

tran.polar(C = C, D.r = D, r = r, theta = theta,
  flux.r.up = flux.r.up, flux.r.down = flux.r.down,
  flux.theta.up = flux.theta.up, flux.theta.down = flux.theta.down,
  full.output = TRUE)


## =============================================================================
## A model with diffusion and first-order consumption
## =============================================================================
N     <- 50          # number of grid cells
XX    <- 4           # total size
rr    <- 0.005       # consumption rate
ini   <- 1           # initial value at x=0
D     <- 400

r     <- seq (2, 4, len = N+1)
theta   <- seq(0, 2*pi, len = N+1)
theta.m <- 0.5*(theta[-1]+theta[-(N+1)])

# The model equations

Diffpolar <- function (t, y, parms)  {
  CONC  <- matrix(nrow = N, ncol = N, data = y)
  tran  <- tran.polar(CONC, D.r = D, D.theta = D, r = r, theta = theta,
        C.r.up = 0, C.r.down = 1*sin(5*theta.m), 
        cyclicBnd = 2, full.output=TRUE )
  dCONC <- tran$dC  - rr * CONC
  return (list(dCONC))
}

# solve to steady-state; cyclicBnd = 2, because of C.theta.up, C.theta.down
out <- steady.2D (y = rep(0, N*N), func = Diffpolar, parms = NULL,
                  dim = c(N, N), lrw = 1e6, cyclicBnd = 2)

image(out)

cart <- polar2cart(out, r = r, theta = theta, 
                        x = seq(-4, 4, len = 100), 
                        y = seq(-4, 4, len = 100))
image(cart)
          

Example output

Loading required package: rootSolve
Loading required package: deSolve
Loading required package: shape
$dC
          [,1] [,2] [,3] [,4] [,5] [,6]
[1,] 729.51252    0    0    0    0    0
[2,]  81.05695    0    0    0    0    0
[3,]  29.18050    0    0    0    0    0
[4,]  14.88801    0    0    0    0    0

$flux.r.up
[1] 400 400 400 400 400 400

$flux.r.down
[1] 0 0 0 0 0 0

$flux.theta.up
[1] 763.9437 254.6479 152.7887 109.1348

$flux.theta.down
[1] 0 0 0 0

$dC
          [,1]     [,2]     [,3]     [,4]     [,5]      [,6]
[1,] 190.98593   0.0000   0.0000   0.0000   0.0000 190.98593
[2,]  63.66198   0.0000   0.0000   0.0000   0.0000  63.66198
[3,]  38.19719   0.0000   0.0000   0.0000   0.0000  38.19719
[4,] 141.56942 114.2857 114.2857 114.2857 114.2857 141.56942

$C.r.up
[1] 0.5 0.5 0.5 0.5 0.5 0.5

$C.r.down
[1] 0.5 0.5 0.5 0.5 0.5 0.5

$C.theta.up
[1] 0.2617994 0.7853982 1.3089969 1.8325957

$C.theta.down
[1] 0.2617994 0.7853982 1.3089969 1.8325957

$r.flux
     [,1] [,2] [,3] [,4] [,5] [,6]
[1,]  200  200  200  200  200  200
[2,]    0    0    0    0    0    0
[3,]    0    0    0    0    0    0
[4,]    0    0    0    0    0    0
[5,] -200 -200 -200 -200 -200 -200

$theta.flux
     [,1] [,2] [,3] [,4] [,5] [,6] [,7]
[1,]  200    0    0    0    0    0 -200
[2,]  200    0    0    0    0    0 -200
[3,]  200    0    0    0    0    0 -200
[4,]  200    0    0    0    0    0 -200

$flux.r.up
[1] 200 200 200 200 200 200

$flux.r.down
[1] -200 -200 -200 -200 -200 -200

$flux.theta.up
[1] 200 200 200 200

$flux.theta.down
[1] -200 -200 -200 -200

ReacTran documentation built on May 2, 2019, 9:38 a.m.