| dPL | R Documentation |
Density, distribution function, quantile function,
random generation and hazard function for the Power Lindley distribution
with parameters mu and sigma.
dPL(x, mu, sigma, log = FALSE) pPL(q, mu, sigma, lower.tail = TRUE, log.p = FALSE) qPL(p, mu, sigma, lower.tail = TRUE, log.p = FALSE) rPL(n, mu, sigma) hPL(x, mu, sigma)
x, q |
vector of quantiles. |
mu |
parameter. |
sigma |
parameter. |
log, log.p |
logical; if TRUE, probabilities p are given as log(p). |
lower.tail |
logical; if TRUE (default), probabilities are P[X <= x], otherwise, P[X > x]. |
p |
vector of probabilities. |
n |
number of observations. |
The Power Lindley Distribution with parameters mu
and sigma has density given by
f(x) = \frac{μ σ^2}{σ + 1} (1 + x^μ) x ^ {μ - 1} \exp({-σ x ^μ}),
for x > 0.
dPL gives the density, pPL gives the distribution
function, qPL gives the quantile function, rPL
generates random deviates and hPL gives the hazard function.
Amylkar Urrea Montoya, amylkar.urrea@udea.edu.co
almalki2014modificationsRelDists
\insertRefGhitanya2013RelDists
old_par <- par(mfrow = c(1, 1)) # save previous graphical parameters
## The probability density function
curve(dPL(x, mu=1.5, sigma=0.2), from=0.1, to=10,
col="red", las=1, ylab="f(x)")
## The cumulative distribution and the Reliability function
par(mfrow=c(1, 2))
curve(pPL(x, mu=1.5, sigma=0.2),
from=0.1, to=10, col="red", las=1, ylab="F(x)")
curve(pPL(x, mu=1.5, sigma=0.2, lower.tail=FALSE),
from=0.1, to=10, col="red", las=1, ylab="R(x)")
## The quantile function
p <- seq(from=0, to=0.99999, length.out=100)
plot(x=qPL(p, mu=1.5, sigma=0.2), y=p, xlab="Quantile",
las=1, ylab="Probability")
curve(pPL(x, mu=1.5, sigma=0.2), from=0.1, add=TRUE, col="red")
## The random function
hist(rPL(n=1000, mu=1.5, sigma=0.2), freq=FALSE,
xlab="x", las=1, main="")
curve(dPL(x, mu=1.5, sigma=0.2), from=0.1, to=15, add=TRUE, col="red")
## The Hazard function
par(mfrow=c(1,1))
curve(hPL(x, mu=1.5, sigma=0.2), from=0.1, to=15,
col="red", ylab="Hazard function", las=1)
par(old_par) # restore previous graphical parameters
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.