Nothing
#' COVID-19 Markers Dataset
#'
#' Marker data from COVID-19 analysis using CLR transformation, 5 PCs, and 1000 features.
#'
#' @name covid_markers
#' @keywords internal
NULL
#' Robust COVID-19 Markers Dataset
#'
#' Robust marker data from COVID-19 analysis using CLR transformation, 5 PCs, and 1000 features.
#'
#' @name robust_covid_markers
#' @keywords internal
NULL
#' Robust COVID-19 Markers (02 Trim) Dataset
#'
#' Robust marker data with 0.2 trimming from COVID-19 analysis using CLR transformation.
#'
#' @name robust_covid_markers_02trim
#' @keywords internal
NULL
#' Robust COVID-19 Markers (03 Trim) Dataset
#'
#' Robust marker data with 0.3 trimming from COVID-19 analysis using CLR transformation.
#'
#' @name robust_covid_markers_03trim
#' @keywords internal
NULL
#' Robust COVID-19 Dataset
#'
#' Robust COVID-19 data using CLR transformation, 5 PCs, and 1000 features.
#'
#' @name robust_covid_data
#' @keywords internal
NULL
#' COVID-19 CLR Transformation Marker Effects (Internal)
#'
#' Internal dataset containing marker gene effects using CLR transformation
#' (5 PCs, 1000 features) for evaluating trimming effects in scTrimClust.
#' Used by \code{\link{scTC_trim_effect}}.
#'
#' @format A data frame with marker genes as rows and the following columns:
#' \describe{
#' \item{CellAnnotation}{Additional cell annotation information}
#' \item{X}{Row identifier}
#' \item{avg_log2FC}{Average log2 fold-change}
#' \item{gene}{Gene identifier}
#' \item{p_val}{Raw p-value}
#' \item{p_val_adj}{Adjusted p-value}
#' \item{pct.1}{Percentage of cells expressing the gene in cluster}
#' \item{pct.2}{Percentage of cells expressing the gene in other clusters}
#' \item{cluster}{Cluster assignment}
#' }
#' @name scTC_eff_clr
#' @keywords internal
NULL
#' Robust COVID-19 CLR Transformation Effects (Internal)
#'
#' Internal dataset containing robust marker gene effects using CLR transformation
#' (5 PCs, 1000 features) for evaluating trimming effects in scTrimClust.
#' Used by \code{\link{scTC_trim_effect}}.
#'
#' @format A data frame with the same structure as \code{scTC_eff_clr}
#' @name scTC_eff_clr_robust
#' @keywords internal
NULL
#' COVID-19 LogNormalized Marker Effects (Internal)
#'
#' Internal dataset containing marker gene effects using LogNormalization
#' (5 PCs, 1000 features) for evaluating trimming effects in scTrimClust.
#' Used by \code{\link{scTC_trim_effect}}.
#'
#' @format A data frame with the same structure as \code{scTC_eff_clr}
#' @name scTC_eff_log
#' @keywords internal
NULL
#' Robust COVID-19 LogNormalized Effects (Internal)
#'
#' Internal dataset containing robust marker gene effects using LogNormalization
#' (5 PCs, 1000 features) for evaluating trimming effects in scTrimClust.
#' Used by \code{\link{scTC_trim_effect}}.
#'
#' @format A data frame with the same structure as \code{scTC_eff_clr}
#' @name scTC_eff_log_robust
#' @keywords internal
NULL
#' ProcessedSingle-Cell Data
#'
#' A pre-processed Seurat object containing synthetic single cell data.
#'
#' @format A Seurat object with the following characteristics:
#' \describe{
#' \item{Assays}{RNA assay with 200 features}
#' \item{Cells}{150 single-cell samples}
#' \item{Variable features}{100 most variable genes}
#' \item{Layers}{counts (raw), data (normalized), scale.data (scaled)}
#' \item{Dimensional reductions}{PCA, t-SNE}
#' \item{Normalization}{LogNormalize with scale factor 10,000}
#' }
#'
#' @details
#' The object contains synthetic data with 150 cells for 3 cell types.
#' Processing steps match the Seurat tutorial and include:
#' \itemize{
#' \item Identification of 100 most variable features
#' \item Data scaling and centering
#' \item PCA dimensional reduction (20 principal components)
#' \item t-SNE dimensional reduction
#' }
#'
#' @name seurat_obj
#' @keywords internal
NULL
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.