| rbase.pdist | R Documentation |
Geodesic distance \rho(x,y) is the length of (locally) shortest path
connecting two points x,y\in\mathcal{M}. Some manifolds have closed-form expression, while
others need numerical approximation.
rbase.pdist(input, parallel = FALSE)
input |
a S3 object of |
parallel |
a flag for enabling parallel computation. |
an (n\times n) matrix of pairwise distances.
### Generate 10 2-frames in R^4
ndata = 10
data = array(0,c(4,2,ndata))
for (i in 1:ndata){
tgt = matrix(rnorm(4*4),nrow=4)
data[,,i] = qr.Q(qr(tgt))[,1:2]
}
## Compute Pairwise Distances as if for Grassmann and Stiefel Manifold
A = rbase.pdist(riemfactory(data,name="grassmann"))
B = rbase.pdist(riemfactory(data,name="stiefel"))
## Visual Comparison in Two Cases
opar = par(no.readonly=TRUE)
par(mfrow=c(1,2))
image(A, col=gray((0:100)/100), main="Grassmann")
image(B, col=gray((0:100)/100), main="Stiefel")
par(opar)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.