Nothing
## ----include = FALSE----------------------------------------------------------
knitr::opts_chunk$set(
collapse = TRUE,
comment = "#>"
)
## ----eval=FALSE---------------------------------------------------------------
# # Load relevant packages
# library(Rmonize)
# library(tidyverse) # Collection of R packages for data science
## ----eval=FALSE---------------------------------------------------------------
# # See available examples
# names(Rmonize_examples)
## ----eval=FALSE---------------------------------------------------------------
# # Get the input datasets
# dataset_study1 <- Rmonize_examples$input_dataset_study1
# dataset_study2 <- Rmonize_examples$input_dataset_study2
# dataset_study3 <- Rmonize_examples$input_dataset_study3
# dataset_study4 <- Rmonize_examples$input_dataset_study4
# dataset_study5 <- Rmonize_examples$input_dataset_study5
## ----eval=FALSE---------------------------------------------------------------
# # Group multiple datasets into a dossier.
# # IMPORTANT: The names of the datasets in the dossier must match the column
# # input_dataset in the Data Processing Elements.
# # These will also be used in documentation of the harmonization outputs.
#
# input_dossier <- dossier_create(list(
# dataset_study1,
# dataset_study2,
# dataset_study3,
# dataset_study4,
# dataset_study5))
## ----eval=FALSE---------------------------------------------------------------
# # Get a DataSchema
# dataschema <- Rmonize_examples$DataSchema
## ----fig.cap="Subsets of the example DataSchema document, showing the Variables", out.width="80%", fig.align="center",echo=FALSE----
knitr::include_graphics("images/vig2_fig01a.png")
## ----fig.cap="Subsets of the example DataSchema document, showing the Categories", out.width="80%", fig.align="center",echo=FALSE----
knitr::include_graphics("images/vig2_fig01b.png")
## ----eval=FALSE---------------------------------------------------------------
# # Get the Data Processing Elements
# dpe <- Rmonize_examples$`Data_Processing_Element_no errors`
#
# # Get the Data Processing Elements for a single dataset (study1)
# dpe_study1 <- dpe %>%
# filter(input_dataset == "dataset_study1")
## ----fig.cap="Subset of the example Data Processing Elements document.", out.width="100%", fig.align="center",echo=FALSE----
knitr::include_graphics("images/vig2_fig02.png")
## ----eval=FALSE---------------------------------------------------------------
# # Run processing function on all five datasets
# harmonized_dossier <- harmo_process(
# object = input_dossier,
# dataschema = dataschema,
# data_proc_elem = dpe,
# harmonized_col_dataset = 'adm_study_id') # Identifies the harmonized variable to use as dataset identifiers
#
# # Run processing function on a single dataset
# harmonized_dossier_study1 <- harmo_process(
# object = dataset_study1,
# dataschema = dataschema,
# data_proc_elem = dpe_study1,
# harmonized_col_dataset = 'adm_study_id') # Identifies the harmonized variable to use as dataset identifiers
## ----eval=FALSE---------------------------------------------------------------
# # Produce a summary report of the harmonized datasets and variables
# summary_report_harmonized_dossier <-
# harmonized_dossier_summarize(harmonized_dossier)
#
# # Produce a visual report of the harmonized datasets and variables
# # You must specify a folder to contain the visual report files, and the folder name must not already exist.
# # WARNING: This script creates a folder 'tmp'.
# bookdown_path <- paste0('tmp/',basename(tempdir()))
# if(dir.exists(bookdown_path)) file.remove(bookdown_path)
#
# harmonized_dossier_visualize(
# harmonized_dossier,
# bookdown_path = bookdown_path,
# harmonized_dossier_summary = summary_report_harmonized_dossier
# )
#
# # Open the visual report in a browser.
# bookdown_open(bookdown_path)
## ----eval=FALSE---------------------------------------------------------------
# # Generate one pooled harmonized dataset from a harmonized dossier
# pooled_harmonized_dataset <- pooled_harmonized_dataset_create(
# harmonized_dossier = harmonized_dossier)
## ----eval=FALSE---------------------------------------------------------------
# # Extract the data dictionary for one dataset
# data_dictionary_study1 <- data_dict_extract(harmonized_dossier$dataset_study1)
## ----eval=FALSE---------------------------------------------------------------
#
# # WARNING: This script creates a folder 'tmp'.
# output_path <- paste0('tmp/',basename(tempdir()))
# dir.create(output_path)
#
# # Save the harmonized dossier as an R file to preserve all metadata
# saveRDS(harmonized_dossier, paste0(output_path,"/my_dossier.rds"))
#
# # Export a harmonized dataset to another file format
# library(haven)
# write_sav(harmonized_dossier$dataset_study1, paste0(output_path,"/my_spss_file.sav"))
#
# # Export a summary as an Excel file
# library(fabR)
# write_excel_allsheets(
# summary_report_harmonized_dossier, paste0(output_path,"/my_summary_report.xlsx"))
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.