| RoBTT | R Documentation | 
RoBTT is used to estimate a robust Bayesian
t-test or truncated Bayesian t-test (if truncation is used).
The input either requires the vector of observations for
each group, x1, x2, or the summary statistics (only if the normal
likelihood models are used).
RoBTT(
  x1 = NULL,
  x2 = NULL,
  mean1 = NULL,
  mean2 = NULL,
  sd1 = NULL,
  sd2 = NULL,
  N1 = NULL,
  N2 = NULL,
  truncation = NULL,
  prior_delta = prior(distribution = "cauchy", parameters = list(location = 0, scale =
    sqrt(2)/2)),
  prior_rho = prior(distribution = "beta", parameters = list(alpha = 1, beta = 1)),
  prior_nu = if (is.null(truncation)) prior(distribution = "exp", parameters = list(rate
    = 1)),
  prior_delta_null = prior(distribution = "spike", parameters = list(location = 0)),
  prior_rho_null = prior(distribution = "spike", parameters = list(location = 0.5)),
  prior_nu_null = prior_none(),
  prior_mu = NULL,
  prior_sigma2 = NULL,
  chains = 4,
  iter = 10000,
  warmup = 5000,
  thin = 1,
  parallel = FALSE,
  control = set_control(),
  convergence_checks = set_convergence_checks(),
  save = "all",
  seed = NULL,
  silent = TRUE,
  ...
)
| x1 | vector of observations of the first group | 
| x2 | vector of observations of the second group | 
| mean1 | mean of the first group | 
| mean2 | mean of the first group | 
| sd1 | standard deviation of the first group | 
| sd2 | standard deviation of the first group | 
| N1 | sample size of the first group | 
| N2 | sample size of the first group | 
| truncation | an optional list specifying truncation applied to the data.
Defaults to  
 | 
| prior_delta | prior distributions for the effect size  | 
| prior_rho | prior distributions for the precision allocation  | 
| prior_nu | prior distribution for the degrees of freedom + 2  | 
| prior_delta_null | prior distribution for the  | 
| prior_rho_null | prior distribution for the  | 
| prior_nu_null | prior distribution for the  | 
| prior_mu | prior distribution for the grand mean parameter. Defaults to  | 
| prior_sigma2 | prior distribution for the grand variance parameter. Defaults to  | 
| chains | a number of chains of the MCMC algorithm. | 
| iter | a number of sampling iterations of the MCMC algorithm.
Defaults to  | 
| warmup | a number of warmup  iterations of the MCMC algorithm.
Defaults to  | 
| thin | a thinning of the chains of the MCMC algorithm. Defaults to
 | 
| parallel | whether the individual models should be fitted in parallel.
Defaults to  | 
| control | allows to pass control settings with the
 | 
| convergence_checks | automatic convergence checks to assess the fitted
models, passed with  | 
| save | whether all models posterior distributions should be kept
after obtaining a model-averaged result. Defaults to  | 
| seed | a seed to be set before model fitting, marginal likelihood
computation, and posterior mixing for reproducibility of results. Defaults
to  | 
| silent | whether all print messages regarding the fitting process
should be suppressed. Defaults to  | 
| ... | additional arguments. | 
See \insertCitemaier2022bayesian;textualRoBTT for more details
regarding the robust Bayesian t-test methodology and the corresponding
vignette (vignette("Introduction_to_RoBTT", package = "RoBTT")).
See \insertCitegodmann2024how;textualRoBTT for more details
regarding the truncated Bayesian t-test methodology and the corresponding
vignette (vignette("Truncated_t_test", package = "RoBTT")).
Generic summary.RoBTT(), print.RoBTT(), and plot.RoBTT()
functions are provided to facilitate manipulation with the ensemble.
RoBTT returns an object of class "RoBTT".
summary.RoBTT(), prior()
## Not run: 
# using the example data from Darwin
data("fertilization", package = "RoBTT")
fit <- RoBTT(
  x1       = fertilization$Self,
  x2       = fertilization$Crossed,
  prior_delta = prior("cauchy", list(0, 1/sqrt(2))),
  prior_rho   = prior("beta",   list(3, 3)),
  seed        = 1, 
  chains      = 1,
  warmup      = 1000,
  iter        = 2000,
  control     = set_control(adapt_delta = 0.95)
)
# summary can provide many details about the model
summary(fit)
## End(Not run)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.