RobLox-package | R Documentation |
Functions for the determination of optimally robust influence curves and estimators in case of normal location and/or scale (see Chapter 8 in Kohl (2005) <https://epub.uni-bayreuth.de/839/2/DissMKohl.pdf>).
Note: The first two numbers of package versions do not necessarily reflect package-individual development, but rather are chosen for the RobAStXXX family as a whole in order to ease updating "depends" information.
Matthias Kohl matthias.kohl@stamats.de
M. Kohl (2005). Numerical Contributions to the Asymptotic Theory of Robustness. Dissertation. University of Bayreuth. https://epub.uni-bayreuth.de/id/eprint/839/2/DissMKohl.pdf.
H. Rieder (1994): Robust Asymptotic Statistics. Springer. \Sexpr[results=rd]{tools:::Rd_expr_doi("10.1007/978-1-4684-0624-5")}
H. Rieder, M. Kohl, and P. Ruckdeschel (2008). The Costs of Not Knowing the Radius. Statistical Methods and Applications 17(1): 13-40. \Sexpr[results=rd]{tools:::Rd_expr_doi("10.1007/s10260-007-0047-7")} M. Kohl, P. Ruckdeschel, and H. Rieder (2010). Infinitesimally Robust Estimation in General Smoothly Parametrized Models. Statistical Methods and Applications 19(3): 333-354. \Sexpr[results=rd]{tools:::Rd_expr_doi("10.1007/s10260-010-0133-0")}.
M. Kohl and H.P. Deigner (2010). Preprocessing of gene expression data by optimally robust estimators. BMC Bioinformatics 11, 583. \Sexpr[results=rd]{tools:::Rd_expr_doi("10.1186/1471-2105-11-583")}.
M. Kohl (2012). Bounded influence estimation for regression and scale. Statistics, 46(4): 437-488. \Sexpr[results=rd]{tools:::Rd_expr_doi("10.1080/02331888.2010.540668")}
RobAStBase-package
library(RobLox)
ind <- rbinom(100, size=1, prob=0.05)
x <- rnorm(100, mean=ind*3, sd=(1-ind) + ind*9)
roblox(x)
res <- roblox(x, eps.lower = 0.01, eps.upper = 0.1, returnIC = TRUE)
estimate(res)
confint(res)
confint(res, method = symmetricBias())
pIC(res)
## don't run to reduce check time on CRAN
## Not run:
checkIC(pIC(res))
Risks(pIC(res))
Infos(pIC(res))
plot(pIC(res))
infoPlot(pIC(res))
## End(Not run)
## row-wise application
ind <- rbinom(200, size=1, prob=0.05)
X <- matrix(rnorm(200, mean=ind*3, sd=(1-ind) + ind*9), nrow = 2)
rowRoblox(X)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.