Description Usage Arguments Details Value Author(s) References See Also Examples
The function rgsOptIC.ALs
computes the optimally robust IC
for ALs estimators in case of linear regression with unknown
scale and (convex) contamination neighborhoods where the
regressor is random; confer Subsection 7.3.1 of Kohl (2005).
1 2 | rgsOptIC.ALs(r, K, A.rg.start, b.rg.Up = 1000, delta = 1e-06,
itmax = 50, check = FALSE)
|
r |
non-negative real: neighborhood radius. |
K |
object of class |
A.rg.start |
positive definite and symmetric matrix: starting value for the standardizing matrix of the regression part. |
b.rg.Up |
positive real: the upper end point of the interval to be searched for b.rg. |
delta |
the desired accuracy (convergence tolerance). |
itmax |
the maximum number of iterations. |
check |
logical. Should constraints be checked. |
If A.rg.start
is missing, the inverse of the
second moment matrix of K
is used.
Object of class "ContIC"
Matthias Kohl Matthias.Kohl@stamats.de
Rieder, H. (1994) Robust Asymptotic Statistics. New York: Springer.
Kohl, M. (2005) Numerical Contributions to the Asymptotic Theory of Robustness. Bayreuth: Dissertation.
1 2 3 4 5 6 7 8 9 | ## code takes some time
## Not run:
K <- DiscreteDistribution(1:5) # = Unif({1,2,3,4,5})
IC1 <- rgsOptIC.ALs(r = 0.1, K = K)
checkIC(IC1)
Risks(IC1)
Infos(IC1)
## End(Not run)
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.