Nothing
Code
predict_counterfactual(fit_glm, treatment ~ 1)
Output
Model : y ~ treatment * s1 + covar
Randomization: treatment ~ 1 ( Simple )
Variance Type: vcovG
Marginal Mean:
Estimate Std.Err 2.5 % 97.5 %
pbo 0.200321 0.067690 0.067651 0.3330
trt1 0.763971 0.075929 0.615152 0.9128
trt2 0.971250 0.076543 0.821228 1.1213
Code
predict_counterfactual(fit_lm, treatment ~ 1, data = dummy_data)
Output
Model : y ~ treatment * s1 + covar
Randomization: treatment ~ 1 ( Simple )
Variance Type: vcovG
Marginal Mean:
Estimate Std.Err 2.5 % 97.5 %
pbo 0.200321 0.067690 0.067651 0.3330
trt1 0.763971 0.075929 0.615152 0.9128
trt2 0.971250 0.076543 0.821228 1.1213
Code
predict_counterfactual(fit_binom, treatment ~ 1)
Output
Model : y_b ~ treatment * s1 + covar
Randomization: treatment ~ 1 ( Simple )
Variance Type: vcovG
Marginal Mean:
Estimate Std.Err 2.5 % 97.5 %
pbo 0.356097 0.033599 0.290243 0.4219
trt1 0.580696 0.034418 0.513238 0.6482
trt2 0.621386 0.034019 0.554711 0.6881
Code
pc
Output
Model : y_b ~ treatment * s1
Randomization: treatment ~ 1 ( Simple )
Variance Type: vcovG
Marginal Mean:
Estimate Std.Err 2.5 % 97.5 %
pbo 0.366007 0.033864 0.299634 0.4324
trt1 0.580984 0.035027 0.512332 0.6496
trt2 0.610154 0.034472 0.542589 0.6777
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.