tests/testthat/_snaps/treatment_effect.md

treatment_effect works for lm/glm object

Code
  treatment_effect(fit_binom, treatment = treatment ~ s1, eff_measure = h_diff)
Output
  Model        :  y_b ~ treatment * s1 + covar 
  Randomization:  treatment ~ s1  ( Simple )
  Variance Type:  vcovG 
  Marginal Mean: 
       Estimate  Std.Err    2.5 % 97.5 %
  pbo  0.356097 0.033599 0.290243 0.4219
  trt1 0.580696 0.034418 0.513238 0.6482
  trt2 0.621386 0.034019 0.554711 0.6881

  Contrast     :  eff_measure
                 Estimate  Std.Err Z Value  Pr(>|z|)    
  trt1 v.s. pbo  0.224599 0.047711  4.7075 2.508e-06 ***
  trt2 v.s. pbo  0.265290 0.047534  5.5810 2.391e-08 ***
  trt2 v.s. trt1 0.040691 0.047941  0.8488     0.396    
  ---
  Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Code
  treatment_effect(fit_lm, treatment = treatment ~ s1, eff_measure = h_diff,
  data = dummy_data)
Output
  Model        :  y ~ treatment * s1 + covar 
  Randomization:  treatment ~ s1  ( Simple )
  Variance Type:  vcovG 
  Marginal Mean: 
       Estimate  Std.Err    2.5 % 97.5 %
  pbo  0.200321 0.067690 0.067651 0.3330
  trt1 0.763971 0.075929 0.615152 0.9128
  trt2 0.971250 0.076543 0.821228 1.1213

  Contrast     :  eff_measure
                 Estimate Std.Err Z Value  Pr(>|z|)    
  trt1 v.s. pbo   0.56365 0.10074  5.5952 2.203e-08 ***
  trt2 v.s. pbo   0.77093 0.10133  7.6082 2.779e-14 ***
  trt2 v.s. trt1  0.20728 0.10683  1.9402   0.05235 .  
  ---
  Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

treatment_effect works if variance is not used

Code
  treatment_effect(fit_binom, treatment = treatment ~ s1, eff_measure = h_diff,
  variance = NULL)
Output
  Model        :  y_b ~ treatment * s1 + covar 
  Randomization:  treatment ~ s1  ( Simple )
  Variance Type:  vcovG 
  Marginal Mean: 
       Estimate  Std.Err    2.5 % 97.5 %
  pbo  0.356097 0.033599 0.290243 0.4219
  trt1 0.580696 0.034418 0.513238 0.6482
  trt2 0.621386 0.034019 0.554711 0.6881

  Contrast     :  eff_measure
                 Estimate  Std.Err Z Value  Pr(>|z|)    
  trt1 v.s. pbo  0.224599 0.047711  4.7075 2.508e-06 ***
  trt2 v.s. pbo  0.265290 0.047534  5.5810 2.391e-08 ***
  trt2 v.s. trt1 0.040691 0.047941  0.8488     0.396    
  ---
  Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

treatment_effect works if pair is defined

Code
  treatment_effect(fit_binom, pair = against_ref(c("pbo", "trt1", "trt2")),
  treatment = treatment ~ s1, eff_measure = h_diff)
Output
  Model        :  y_b ~ treatment * s1 + covar 
  Randomization:  treatment ~ s1  ( Simple )
  Variance Type:  vcovG 
  Marginal Mean: 
       Estimate  Std.Err    2.5 % 97.5 %
  pbo  0.356097 0.033599 0.290243 0.4219
  trt1 0.580696 0.034418 0.513238 0.6482
  trt2 0.621386 0.034019 0.554711 0.6881

  Contrast     :  eff_measure
                Estimate  Std.Err Z Value  Pr(>|z|)    
  trt1 v.s. pbo 0.224599 0.047711  4.7075 2.508e-06 ***
  trt2 v.s. pbo 0.265290 0.047534  5.5810 2.391e-08 ***
  ---
  Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1


Try the RobinCar2 package in your browser

Any scripts or data that you put into this service are public.

RobinCar2 documentation built on April 3, 2025, 9:34 p.m.