Rvmmin is an all-R version of the Fletcher-Nash variable metric nonlinear parameter optimization code of @Fletcher70 as modified by @cnm79.
This vignette is intended to show various features of the package, so it is rather detailed and "busy". However, it is also hopefully helpful in showing how to use the method for more difficult problems.
Fletcher's variable metric method attempts to mimic Newton's iteration for function minimization approximately.
Newton's method starts with an original set of parameters $x_0$. At a given iteraion, which could be the first, we want to solve
$$x_{k+1} = x_{k} - H^{-1} g$$
where $H$ is the Hessian and $g$ is the gradient at $x_k$.
Newton's method is unattractive in general function minimization situations because
evaluating the Hessian is generally time consuming and error prone;
solving the equation $$H delta = -g$$ (which is much less computational effort than inverting $H$), is still a lot of work which needs to be carried out every iteration.
While the base Newton algorithm is as given, generally we carry out some sort of line search along the search direction delta from the current iterate $x_k$. Indeed, many otherwise highly educated workers try to implement it without paying attention to safeguarding the iterations and ensuring appropriate progress towards a minimum.
Let us use the Chebyquad test problem in $n$=4 parameters with different controls eps and acctol and tabulate the results to explore how our results change with different values of these program control inputs.
cyq.f <- function (x) { rv<-cyq.res(x) f<-sum(rv*rv) } cyq.res <- function (x) { # Fletcher's chebyquad function m = n -- residuals n<-length(x) res<-rep(0,n) # initialize for (i in 1:n) { #loop over resids rr<-0.0 for (k in 1:n) { z7<-1.0 z2<-2.0*x[k]-1.0 z8<-z2 j<-1 while (j<i) { z6<-z7 z7<-z8 z8<-2*z2*z7-z6 # recurrence to compute Chebyshev polynomial j<-j+1 } # end recurrence loop rr<-rr+z8 } # end loop on k rr<-rr/n if (2*trunc(i/2) == i) { rr <- rr + 1.0/(i*i - 1) } res[i]<-rr } # end loop on i res } cyq.jac<- function (x) { # Chebyquad Jacobian matrix n<-length(x) cj<-matrix(0.0, n, n) for (i in 1:n) { # loop over rows for (k in 1:n) { # loop over columns (parameters) z5<-0.0 cj[i,k]<-2.0 z8<-2.0*x[k]-1.0 z2<-z8 z7<-1.0 j<- 1 while (j<i) { # recurrence loop z4<-z5 z5<-cj[i,k] cj[i,k]<-4.0*z8+2.0*z2*z5-z4 z6<-z7 z7<-z8 z8<-2.0*z2*z7-z6 j<- j+1 } # end recurrence loop cj[i,k]<-cj[i,k]/n } # end loop on k } # end loop on i cj } cyq.g <- function (x) { cj<-cyq.jac(x) rv<-cyq.res(x) gg<- as.vector(2.0* rv %*% cj) } require(Rvmmin) nn <- 4 xx0 <- 1:nn xx0 <- xx0 / (nn+1.0) # Initial value suggested by Fletcher # cat("aed\n") # aed <- Rvmminu(xx0, cyq.f, cyq.g, control=list(trace=2, checkgrad=FALSE)) # print(aed) #================================ # Now build a table of results for different values of eps and acc veps <- c(1e-3, 1e-5, 1e-7, 1e-9, 1e-11) vacc <- c(.1, .01, .001, .0001, .00001, .000001) resdf <- data.frame(eps=NA, acctol=NA, nf=NA, ng=NA, fval=NA, gnorm=NA) for (eps in veps) { for (acctol in vacc) { ans <- Rvmminu(xx0, cyq.f, cyq.g, control=list(eps=eps, acctol=acctol, trace=0)) gn <- as.numeric(crossprod(cyq.g(ans$par))) resdf <- rbind(resdf, c(eps, acctol, ans$counts[1], ans$counts[2], ans$value, gn)) } } resdf <- resdf[-1,] # Display the function value found for different tolerances xtabs(formula = fval ~ acctol + eps, data=resdf) # Display the gradient norm found for different tolerances xtabs(formula = gnorm ~ acctol + eps, data=resdf) # Display the number of function evaluations used for different tolerances xtabs(formula = nf ~ acctol + eps, data=resdf) # Display the number of gradient evaluations used for different tolerances xtabs(formula = ng ~ acctol + eps, data=resdf)
Here -- and we caution that this is but a single instance of a single test problem -- the
differences in results and level of effort to obtain them are regulated by the values
of eps
only. This control is used to judge the size of the gradient norm and the
gradient projection on the search vector.
One of the more difficult aspects of termination decisions is that
we need to decide when we have a "nearly" zero gradient. However,
this "zero gradient" is relative to the overall scale of the
function. Let us see what happens when we consider solving a problem
where the function scale is adjustable. Note that we multiply the
constant sequence yy
by pi/4
to avoid integer values which may
give results that are fortuitously better than may be normally found.
require(Rvmmin) sq<-function(x, exfs=1){ nn<-length(x) yy<-(1:nn)*pi/4 f<-(10^exfs)*sum((yy-x)^2) f } sq.g <- function(x, exfs=1){ nn<-length(x) yy<-(1:nn)*pi/4 gg<- 2*(x - yy)*(10^exfs) } require(Rvmmin) nn <- 4 xx0 <- rep(pi, nn) # crude start # Now build a table of results for different values of eps and acc veps <- c(1e-3, 1e-5, 1e-7, 1e-9, 1e-11) exfsi <- 1:6 resdf <- data.frame(eps=NA, exfs=NA, nf=NA, ng=NA, fval=NA, gnorm=NA) for (eps in veps) { for (exfs in exfsi) { ans <- Rvmminu(xx0, sq, sq.g, control=list(eps=eps, trace=0), exfs=exfs) gn <- as.numeric(crossprod(sq.g(ans$par))) resdf <- rbind(resdf, c(eps, exfs, ans$counts[1], ans$counts[2], ans$value, gn)) } } resdf <- resdf[-1,] # Display the function value found for different tolerances xtabs(formula = fval ~ exfs + eps, data=resdf) # Display the gradient norm found for different tolerances xtabs(formula = gnorm ~ exfs + eps, data=resdf) # Display the number of function evaluations used for different tolerances xtabs(formula = nf ~ exfs + eps, data=resdf) # Display the number of gradient evaluations used for different tolerances xtabs(formula = ng ~ exfs + eps, data=resdf)
The general tendency here is for the amount of work in terms of function evaluations to rise with the function scale and with tighter (smaller) test tolerances, while the quality of the solution is poorer with larger scale and also larger (looser) tolerances. However, some exceptions can be seen, though the overall quality of solutions (function and gradient norm) is very good. Moreover, the number of gradient evaluations does not climb notably with the scale or inverse tolerance.
There are similar issues of parameter scaling. Let us look at very simple sum of squares function where we scale the parameters in a nasty way.
ssq.f<-function(x){ nn<-length(x) yy <- 1:nn f<-sum((yy-x/10^yy)^2) f } ssq.g <- function(x){ nn<-length(x) yy<-1:nn gg<- 2*(x/10^yy - yy)*(1/10^yy) } xy <- c(1, 1/10, 1/100, 1/1000) # note: gradient was checked using numDeriv veps <- c(1e-3, 1e-5, 1e-7, 1e-9, 1e-11) vacc <- c(.1, .01, .001, .0001, .00001, .000001) resdf <- data.frame(eps=NA, acctol=NA, nf=NA, ng=NA, fval=NA, gnorm=NA) for (eps in veps) { for (acctol in vacc) { ans <- Rvmminu(xy, ssq.f, ssq.g, control=list(eps=eps, acctol=acctol, trace=0)) gn <- as.numeric(crossprod(ssq.g(ans$par))) resdf <- rbind(resdf, c(eps, acctol, ans$counts[1], ans$counts[2], ans$value, gn)) } } resdf <- resdf[-1,] # Display the function value found for different tolerances xtabs(formula = fval ~ acctol + eps, data=resdf) # Display the gradient norm found for different tolerances xtabs(formula = gnorm ~ acctol + eps, data=resdf) # Display the number of function evaluations used for different tolerances xtabs(formula = nf ~ acctol + eps, data=resdf) # Display the number of gradient evaluations used for different tolerances xtabs(formula = ng ~ acctol + eps, data=resdf)
The results above suggest that parameter scaling is not much of a problem.
Actually, these are the very best results I have found with any method for
this problem, which is actually rather nasty. I suggest trying this problem
on your favourite optimizer. Alternatively, use the package optimr
and
run the function opm()
with method="ALL"
.
This notorious problem (see @cnm79, page 120, @nlpor14, page 205, for details under the heading Hobbs Weeds problem) is small but generally difficult due to the possibility of bad scaling of both function and parameters and a near-singular Hessian in the original parameterization.
The Fletcher variable metric method can solve this problem quite well, though default termination settings should be overridden. It is important to ensure there are enough iterations to allow the method to "grind" at the problem. If one uses default settings for maxit in optim:BFGS, then the success rate drops to less than 2/3 of cases tried below.
Below we use 100 "random" starting points for both Rvmmin and the optim:BFGS minimizers (which should be, but are not quite, the same).
## hobbstarts.R -- starting points for Hobbs problem hobbs.f<- function(x){ # # Hobbs weeds problem -- function if (abs(12*x[3]) > 500) { # check computability fbad<-.Machine$double.xmax return(fbad) } res<-hobbs.res(x) f<-sum(res*res) ## cat("fval =",f,"\n") ## f } hobbs.res<-function(x){ # Hobbs weeds problem -- residual # This variant uses looping if(length(x) != 3) stop("hobbs.res -- parameter vector n!=3") y<-c(5.308, 7.24, 9.638, 12.866, 17.069, 23.192, 31.443, 38.558, 50.156, 62.948, 75.995, 91.972) t<-1:12 if(abs(12*x[3])>50) { res<-rep(Inf,12) } else { res<-x[1]/(1+x[2]*exp(-x[3]*t)) - y } } hobbs.jac<-function(x){ # Jacobian of Hobbs weeds problem jj<-matrix(0.0, 12, 3) t<-1:12 yy<-exp(-x[3]*t) zz<-1.0/(1+x[2]*yy) jj[t,1] <- zz jj[t,2] <- -x[1]*zz*zz*yy jj[t,3] <- x[1]*zz*zz*yy*x[2]*t return(jj) } hobbs.g<-function(x){ # gradient of Hobbs weeds problem # NOT EFFICIENT TO CALL AGAIN jj<-hobbs.jac(x) res<-hobbs.res(x) gg<-as.vector(2.*t(jj) %*% res) return(gg) } require(Rvmmin) set.seed(12345) nrun<-100 sstart<-matrix(runif(3*nrun, 0, 5), nrow=nrun, ncol=3) ustart<-sstart %*% diag(c(100, 10, 0.1)) nsuccR <- 0 nsuccO <- 0 vRvm <- rep(NA, nrun) voptim <- vRvm fRvm <- vRvm gRvm <- vRvm foptim <- vRvm goptim <- vRvm for (irun in 1:nrun) { us <- ustart[irun,] # print(us) # ans <- Rvmminu(us, hobbs.f, hobbs.g, control=list(trace=1)) # ans <- optim(us, hobbs.f, hobbs.g, method="BFGS") ans <- Rvmminu(us, hobbs.f, hobbs.g, control=list(trace=0)) ao <- optim(us, hobbs.f, hobbs.g, method="BFGS", control=list(maxit=3000)) # ensure does not max function out # cat(irun," Rvmminu value =",ans$value," optim:BFGS value=",ao$value,"\n") if (ans$value < 2.5879) nsuccR <- nsuccR + 1 if (ao$value < 2.5879) nsuccO <- nsuccO + 1 # tmp <- readline() vRvm[irun] <- ans$value voptim[irun] <- ao$value fRvm[irun] <- ans$counts[1] gRvm[irun] <- ans$counts[2] foptim[irun] <- ao$counts[1] goptim[irun] <- ao$counts[2] } cat("Rvmminu: number of successes=",nsuccR," propn=",nsuccR/nrun,"\n") cat("optim:BFGS no. of successes=",nsuccO," propn=",nsuccO/nrun,"\n") fgc <- data.frame(fRvm, foptim, gRvm, goptim) summary(fgc)
From this summary, it appears that Rvmmin, on average, uses fewer gradient and function evaluations to achieve the desired result.
For comparison, we now re-run the example with default settings for maxit in optim:BFGS.
nsuccR <- 0 nsuccO <- 0 for (irun in 1:nrun) { us <- ustart[irun,] # print(us) # ans <- Rvmminu(us, hobbs.f, hobbs.g, control=list(trace=1)) # ans <- optim(us, hobbs.f, hobbs.g, method="BFGS") ans <- Rvmminu(us, hobbs.f, hobbs.g, control=list(trace=0)) ao <- optim(us, hobbs.f, hobbs.g, method="BFGS") # ensure does not max function out # cat(irun," Rvmminu value =",ans$value," optim:BFGS value=",ao$value,"\n") if (ans$value < 2.5879) nsuccR <- nsuccR + 1 if (ao$value < 2.5879) nsuccO <- nsuccO + 1 # tmp <- readline() vRvm[irun] <- ans$value voptim[irun] <- ao$value fRvm[irun] <- ans$counts[1] gRvm[irun] <- ans$counts[2] foptim[irun] <- ao$counts[1] goptim[irun] <- ao$counts[2] } cat("Rvmminu: number of successes=",nsuccR," propn=",nsuccR/nrun,"\n") cat("optim:BFGS no. of successes=",nsuccO," propn=",nsuccO/nrun,"\n") fgc <- data.frame(fRvm, foptim, gRvm, goptim) summary(fgc)
Let us make sure that Rvmminb is doing the right thing with bounds and masks. (This is actually a test in the package.)
bt.f<-function(x){ sum(x*x) } bt.g<-function(x){ gg<-2.0*x } lower <- c(0, 1, 2, 3, 4) upper <- c(2, 3, 4, 5, 6) bdmsk <- rep(1,5) xx <- rep(0,5) # out of bounds ans <- Rvmmin(xx, bt.f, bt.g, lower=lower, upper=upper, bdmsk=bdmsk) ans
Here we fix one or more paramters and minimize over the rest.
sq.f<-function(x){ nn<-length(x) yy<-1:nn f<-sum((yy-x)^2) f } sq.g <- function(x){ nn<-length(x) yy<-1:nn gg<- 2*(x - yy) } xx0 <- rep(pi,3) bdmsk <- c(1, 0, 1) # Middle parameter fixed at pi cat("Check final function value (pi-2)^2 = ", (pi-2)^2,"\n") require(Rvmmin) ans <- Rvmmin(xx0, sq.f, sq.g, lower=-Inf, upper=Inf, bdmsk=bdmsk, control=list(trace=2)) ans ansnog <- Rvmmin(xx0, sq.f, lower=-Inf, upper=Inf, bdmsk=bdmsk, control=list(trace=2)) ansnog
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.