Nothing
knitr::opts_chunk$set(echo = TRUE)
library(Ryacas0) library(Matrix)
Consider this model: $$ x_i = a x_0 + e_i, \quad i=1, \dots, 4 $$ and $x_0=e_0$. All terms $e_0, \dots, e_3$ are independent and $N(0,1)$ distributed. Let $e=(e_0, \dots, e_3)$ and $x=(x_0, \dots x_3)$. Isolating error terms gives that $$ e = L_1 x $$ where $L_1$ has the form
L1chr <- diag(4) L1chr[2:4, 1] <- "-a" L1 <- as.Sym(L1chr) L1
If error terms have variance $1$ then $\mathbf{Var}(e)=L \mathbf{Var}(x) L'$ so the covariance matrix is $V1=\mathbf{Var}(x) = L^- (L^-)'$ while the concentration matrix (the inverse covariances matrix) is $K=L' L$.
L1inv <- Simplify(Inverse(L1)) K1 <- Simplify(Transpose(L1) * L1) V1 <- Simplify(L1inv * Transpose(L1inv))
cat( "\\begin{align} K_1 &= ", TeXForm(K1), " \\\\ V_1 &= ", TeXForm(V1), " \\end{align}", sep = "")
Slightly more elaborate:
L2chr <- diag(4) L2chr[2:4, 1] <- c("-a1", "-a2", "-a3") L2 <- as.Sym(L2chr) L2 Vechr <- diag(4) Vechr[cbind(1:4, 1:4)] <- c("w1", "w2", "w2", "w2") Ve <- as.Sym(Vechr) Ve
L2inv <- Simplify(Inverse(L2)) K2 <- Simplify(Transpose(L2) * Inverse(Ve) * L2) V2 <- Simplify(L2inv * Ve * Transpose(L2inv))
cat( "\\begin{align} K_2 &= ", TeXForm(K2), " \\\\ V_2 &= ", TeXForm(V2), " \\end{align}", sep = "")
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.