Nothing
#' Fitted 'SAEforest' object
#'
#' An object of class \code{SAEforest} always includes point estimates of regionally disaggregated economic
#' and inequality indicators and a \code{MERFmodel} element including information on the model fit for fixed
#' effects as well as random effects. Optionally an \code{SAEforestObject} includes corresponding MSE estimates.
#' In the case of mean estimates and aggregated covariate information, the \code{SAEforestObject} additionally
#' includes an element, capturing the number of variables used in the weighting process from aggregated
#' covariate information. For an object of class \code{SAEforestObject}, the following generic functions are applicable:
#' \code{\link{print}}, \code{\link{plot}}, \code{\link{summary}} and \code{\link{summarize_indicators}}.
#' Additionally selected generic functions of \pkg{lme4} (\code{fixef, getData, ranef, residuals, sigma, VarCorr}) are
#' directly applicable to an object of class \code{SAEforest}.
#'
#' @return
#' Four components are always included in an SAEforest object. \code{MSE_estimates} and \code{AdjustedSD} are
#' \code{NULL} except MSE results are requested. An element of \code{NrCovar} only exists for SAEforest objects
#' produced by \code{\link{SAEforest_model}} with option \code{aggData = TRUE}.
#'
#' \item{\code{MERFmodel}}{The included \code{MERFmodel} object comprises information on the model fit, details
#' on the performed MERF algorithm as well as details on variance components. See below for an exact description
#' of components.}
#' \item{\code{Indicators}}{A data frame where the first column is the area-level identifier and additional columns
#' are the indicators of interest. Note that objects from \code{\link{SAEforest_model}}
#' only report the "Mean".}
#' \item{\code{MSE_estimates}}{Only if MSE results requested. A data frame where the first column is the area-level
#' identifier and additional columns are the MSE estimates for indicators of interest. Note that objects from
#' \code{\link{SAEforest_model}} only report MSE values for the "Mean".}
#' \item{\code{NrCovar}}{Only if means under aggregated covariate information are estimated, i.e.
#' \code{\link{SAEforest_model}} with option \code{aggData = TRUE}. A list containing variable names of
#' covariates used for the calculation of needed calibration weights for point estimates. See Krennmair et al. (2022a) for
#' methodological details an explanations.}
#'
#' Details on object of \code{MERFmodel}:
#'
#' \item{\code{Forest}}{A random forest of class \link[ranger]{ranger} modelling fixed effects
#' of the model.}
#' \item{\code{EffectModel}}{A model of random effects of class \code{\link[lme4]{merMod}} capturing
#' structural components of MERFs and modeling random components.}
#' \item{\code{RandomEffects}}{List element containing the values of random intercepts from \code{EffectModel}.}
#' \item{\code{RanEffSD}}{Numeric value of standard deviation of random intercepts.}
#' \item{\code{ErrorSD}}{Numeric value of standard deviation of unit-level errors.}
#' \item{\code{VarianceCovariance}}{VarCorr matrix from \code{EffectModel}.}
#' \item{\code{LogLik}}{Vector with numerical entries showing the loglikelihood of the MERF algorithm.}
#' \item{\code{IterationsUsed}}{Numeric number of iterations used until convergence of the MERF algorithm.}
#' \item{\code{OOBresiduals}}{Vector of OOB-residuals.}
#' \item{\code{Random}}{Character specifying the random intercept in the random effects model.}
#' \item{\code{ErrorTolerance}}{Numerical value to monitor the MERF algorithm's convergence.}
#' \item{\code{initialRandomEffects}}{Numeric value or vector of initial specification of random effects.}
#' \item{\code{MaxIterations}}{Numeric value specifying the maximal amount of iterations for the
#' MERF algorithm.}
#' \item{\code{call}}{The summarized function call producing the object.}
#' \item{\code{data_specs}}{Data characteristics such as domain-specific sample sizes or number of
#' out-of-sample areas.}
#' \item{\code{data}}{Processed survey sample data.}
#'
#' @details
#' Note that the \code{MERFmodel} object is a composition of elements from a random forest of class
#' \code{ranger} and a random effects model of class \code{\link[lme4]{merMod}}. Thus, all generic functions are
#' applicable to corresponding objects. For further details on generic functions see \code{\link[ranger]{ranger}}
#' and \code{\link[lme4]{lmer}} as well as the examples below.
#'
#' @references
#' Krennmair, P., & Schmid, T. (2022). Flexible Domain Prediction Using Mixed Effects
#' Random Forests. Journal of Royal Statistical Society: Series C (Applied Statistics) (forthcoming).
#'
#' Krennmair, P., & Würz, N. & Schmid, T. (2022a). Analysing Opportunity Cost of Care Work using
#' Mixed Effects Random Forests under Aggregated Census Data.
#'
#' Krennmair, P., & Schmid, T & Tzavidis, Nikos. (2022b). The Estimation of Poverty Indicators Using
#' Mixed Effects Random Forests. Working Paper.
#'
#' @seealso \code{\link{SAEforest_model}}, \code{ \link[ranger]{ranger}},
#' \code{ \link[lme4]{lmer}}
#'
#' @examples
#' \donttest{
#' # Loading data
#' data("eusilcA_pop")
#' data("eusilcA_smp")
#'
#' income <- eusilcA_smp$eqIncome
#' X_covar <- eusilcA_smp[,-c(1,16,17,18)]
#'
#' # Example 1:
#' # Calculating point estimates and discussing basic generic functions
#'
#' model1 <- SAEforest_model(Y = income, X = X_covar, dName = "district",
#' smp_data = eusilcA_smp, pop_data = eusilcA_pop,
#' num.trees=50, mtry = 3)
#'
#' #SAEforest generics:
#'
#' summary(model1)
#' summarize_indicators(model1)
#' residuals(model1)
#' sigma(model1)
#' }
#' @name SAEforestObject
NULL
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.