Nothing
# Generated by using Rcpp::compileAttributes() -> do not edit by hand
# Generator token: 10BE3573-1514-4C36-9D1C-5A225CD40393
DP <- function(parameters, M, N_truncated, N_sample, CDP = TRUE) {
.Call(`_SBMTrees_DP`, parameters, M, N_truncated, N_sample, CDP)
}
update_DP_normal <- function(X, tau, L = -1, U = 2) {
.Call(`_SBMTrees_update_DP_normal`, X, tau, L, U)
}
DP_sampler <- function(N, parameters) {
.Call(`_SBMTrees_DP_sampler`, N, parameters)
}
bart_train <- function(X, Y, nburn = 100L, npost = 1000L, verbose = TRUE) {
.Call(`_SBMTrees_bart_train`, X, Y, nburn, npost, verbose)
}
sequential_imputation_cpp <- function(X, Y, type, Z, subject_id, R, binary_outcome = FALSE, nburn = 0L, npost = 3L, skip = 1L, verbose = TRUE, CDP_residual = FALSE, CDP_re = FALSE, seed = NULL, tol = 1e-20, ncores = 0L, ntrees = 200L, fit_loss = FALSE, resample = 0L, pi_CDP = 0.99) {
.Call(`_SBMTrees_sequential_imputation_cpp`, X, Y, type, Z, subject_id, R, binary_outcome, nburn, npost, skip, verbose, CDP_residual, CDP_re, seed, tol, ncores, ntrees, fit_loss, resample, pi_CDP)
}
BMTrees_mcmc <- function(X, Y, Z, subject_id, obs_ind, binary = FALSE, nburn = 0L, npost = 3L, verbose = TRUE, CDP_residual = FALSE, CDP_re = FALSE, seed = NULL, tol = 1e-40, ntrees = 200L, resample = 0L, pi_CDP = 0.99) {
.Call(`_SBMTrees_BMTrees_mcmc`, X, Y, Z, subject_id, obs_ind, binary, nburn, npost, verbose, CDP_residual, CDP_re, seed, tol, ntrees, resample, pi_CDP)
}
update_Covariance <- function(B, Mu, inverse_wishart_matrix, df, N_subject) {
.Call(`_SBMTrees_update_Covariance`, B, Mu, inverse_wishart_matrix, df, N_subject)
}
max_d <- function(x, y) {
.Call(`_SBMTrees_max_d`, x, y)
}
seqD <- function(x, y, by = 1) {
.Call(`_SBMTrees_seqD`, x, y, by)
}
seqC <- function(x, y, by = 1L) {
.Call(`_SBMTrees_seqC`, x, y, by)
}
prodC <- function(x) {
.Call(`_SBMTrees_prodC`, x)
}
sum_array_by_name <- function(X) {
.Call(`_SBMTrees_sum_array_by_name`, X)
}
set_tol <- function(X, tol) {
.Call(`_SBMTrees_set_tol`, X, tol)
}
set_value <- function(X, tol) {
.Call(`_SBMTrees_set_value`, X, tol)
}
character_vector_equals <- function(X, Y) {
.Call(`_SBMTrees_character_vector_equals`, X, Y)
}
row_matrix <- function(X, index) {
.Call(`_SBMTrees_row_matrix`, X, index)
}
matrix_add <- function(X, Z) {
.Call(`_SBMTrees_matrix_add`, X, Z)
}
contains <- function(s, L) {
.Call(`_SBMTrees_contains`, s, L)
}
contains_index <- function(L, s) {
.Call(`_SBMTrees_contains_index`, L, s)
}
row_matrix_unique_rowname <- function(X, rowname) {
.Call(`_SBMTrees_row_matrix_unique_rowname`, X, rowname)
}
row_matrix_rowname <- function(X, rowname) {
.Call(`_SBMTrees_row_matrix_rowname`, X, rowname)
}
matrix_mul_scalar <- function(X, scalar) {
.Call(`_SBMTrees_matrix_mul_scalar`, X, scalar)
}
row_matrix_by_rowname <- function(X, rowname) {
.Call(`_SBMTrees_row_matrix_by_rowname`, X, rowname)
}
count_if <- function(x) {
.Call(`_SBMTrees_count_if`, x)
}
logic_and <- function(x, y) {
.Call(`_SBMTrees_logic_and`, x, y)
}
any <- function(x) {
.Call(`_SBMTrees_any`, x)
}
solve <- function(m) {
.Call(`_SBMTrees_solve`, m)
}
solve_pos_def <- function(m) {
.Call(`_SBMTrees_solve_pos_def`, m)
}
matrix_multiply <- function(mat1, mat2) {
.Call(`_SBMTrees_matrix_multiply`, mat1, mat2)
}
rtgamma <- function(n, shape, scale, lower, upper) {
.Call(`_SBMTrees_rtgamma`, n, shape, scale, lower, upper)
}
make_symmetric <- function(m) {
.Call(`_SBMTrees_make_symmetric`, m)
}
vector_mul_generate_matrix <- function(v) {
.Call(`_SBMTrees_vector_mul_generate_matrix`, v)
}
make_nonsingular <- function(s) {
.Call(`_SBMTrees_make_nonsingular`, s)
}
create_subject_to_B <- function(subject_id) {
.Call(`_SBMTrees_create_subject_to_B`, subject_id)
}
create_row_id_to_row <- function(row_id) {
.Call(`_SBMTrees_create_row_id_to_row`, row_id)
}
innerProduct <- function(x, y) {
.Call(`_SBMTrees_innerProduct`, x, y)
}
cov <- function(m, regularization = 1e-6) {
.Call(`_SBMTrees_cov`, m, regularization)
}
isPositiveDefinite <- function(m) {
.Call(`_SBMTrees_isPositiveDefinite`, m)
}
fix_riwish <- function(m, regularization = 1e-6) {
.Call(`_SBMTrees_fix_riwish`, m, regularization)
}
matrix_slice_parallel <- function(A, i, row) {
.Call(`_SBMTrees_matrix_slice_parallel`, A, i, row)
}
rmvnormArma <- function(n, mean, sigma) {
.Call(`_SBMTrees_rmvnormArma`, n, mean, sigma)
}
cholArma <- function(sigma) {
.Call(`_SBMTrees_cholArma`, sigma)
}
rwishart <- function(df, S) {
.Call(`_SBMTrees_rwishart`, df, S)
}
riwishArma <- function(df, S) {
.Call(`_SBMTrees_riwishArma`, df, S)
}
rinvgamma <- function(a, b) {
.Call(`_SBMTrees_rinvgamma`, a, b)
}
qinvgamma <- function(p, shape, scale) {
.Call(`_SBMTrees_qinvgamma`, p, shape, scale)
}
quadratic_form <- function(X, mu, Sigma) {
.Call(`_SBMTrees_quadratic_form`, X, mu, Sigma)
}
rowSums_I <- function(mat) {
.Call(`_SBMTrees_rowSums_I`, mat)
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.