kCompRand | R Documentation |
Calculates the components to predict all the response variables.
kCompRand(
Y,
family,
size = NULL,
X,
AX = NULL,
random,
loffset = NULL,
k,
init.sigma = rep(1, ncol(Y)),
init.comp = c("pca", "pls"),
method = methodSR("vpi", l = 4, s = 1/2, maxiter = 1000, epsilon = 10^-6, bailout =
1000)
)
Y |
the matrix of random responses |
family |
a vector of character of the same length as the number of response variables: "bernoulli", "binomial", "poisson" or "gaussian" is allowed. |
size |
describes the number of trials for the binomial dependent variables: a (number of observations * number of binomial response variables) matrix is expected. |
X |
the matrix of the standardized explanatory variables |
AX |
the matrix of the additional explanatory variables |
random |
the vector giving the group of each unit (factor) |
loffset |
a matrix of size (number of observations * number of Poisson response variables) giving the log of the offset associated with each observation |
k |
number of components, default is one |
init.sigma |
a vector giving the initial values of the variance components, default is rep(1, ncol(Y)) |
init.comp |
a character describing how the components (loadings-vectors) are initialized in the PING algorithm: "pca" or "pls" is allowed. |
method |
Regularization criterion type: object of class "method.SCGLR"
built by function |
an object of the SCGLR class.
## Not run:
library(SCGLR)
# load sample data
data(dataGen)
k.opt=4
s.opt=0.1
l.opt=10
withRandom.opt=kCompRand(Y=dataGen$Y, family=rep("poisson", ncol(dataGen$Y)),
X=dataGen$X, AX=dataGen$AX,
random=dataGen$random, loffset=log(dataGen$offset), k=k.opt,
init.sigma = rep(1, ncol(dataGen$Y)), init.comp = "pca",
method=methodSR("vpi", l=l.opt, s=s.opt,
maxiter=1000, epsilon=10^-6, bailout=1000))
plot(withRandom.opt, pred=TRUE, plane=c(1,2), title="Component plane (1,2)",
threshold=0.7, covariates.alpha=0.4, predictors.labels.size=6)
## End(Not run)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.