predict.ML | R Documentation |
Predict method for ML objects.
## S3 method for class 'ML'
predict(object, newdata, newoutcome = NULL, ncores = 2, verbose = FALSE, ...)
object |
A model fitting object from |
newdata |
A matrix containing new data with rows corresponding to subjects, and columns to variables. |
newoutcome |
A new character vector (as.factor) of labels for a categorical output (target)(default = NULL). |
ncores |
number of cpu cores (default = 2) |
verbose |
Print predicted out-of-sample MSE values (default = FALSE). |
... |
Currently ignored. |
A list of 3 objects:
"PE", vector of the amse = average MSE over all (sink and mediators) graph nodes; r2 = 1 - amse; and srmr= Standardized Root Means Squared Residual between the out-of-bag correlation matrix and the model correlation matrix.
"mse", vector of the Mean Squared Error (MSE) for each out-of-bag prediction of the sink and mediators graph nodes.
"Yhat", the matrix of continuous predicted values of graph nodes (excluding source nodes) based on out-of-bag samples.
Mario Grassi mario.grassi@unipv.it
# Load Amyotrophic Lateral Sclerosis (ALS)
ig<- alsData$graph
data<- alsData$exprs
data<- transformData(data)$data
group<- alsData$group
#...with train-test (0.5-0.5) samples
set.seed(123)
train<- sample(1:nrow(data), 0.5*nrow(data))
start<- Sys.time()
# ... tree
res1<- SEMml(ig, data[train, ], algo="tree")
mse1<- predict(res1, data[-train, ], verbose=TRUE)
# ... rf
res2<- SEMml(ig, data[train, ], algo="rf")
mse2<- predict(res2, data[-train, ], verbose=TRUE)
# ... xgb
res3<- SEMml(ig, data[train, ], algo="xgb")
mse3<- predict(res3, data[-train, ], verbose=TRUE)
# ... nn
res4<- SEMml(ig, data[train, ], algo="nn")
mse4<- predict(res4, data[-train, ], verbose=TRUE)
end<- Sys.time()
print(end-start)
#...with a categorical (as.factor) outcome
outcome <- factor(ifelse(group == 0, "control", "case")); table(outcome)
res5 <- SEMml(ig, data[train, ], outcome[train], algo="tree")
pred <- predict(res5, data[-train, ], outcome[-train], verbose=TRUE)
yhat <- pred$Yhat[ ,levels(outcome)]; head(yhat)
yobs <- outcome[-train]; head(yobs)
classificationReport(yobs, yhat, verbose=TRUE)$stats
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.