View source: R/network_to_path.R
network_to_path | R Documentation |
Takes a precision matrix and generates a lower-triangular weights matrix.
network_to_path(omega, input_type = "precision", digits = 20)
omega |
input matrix, with rows and columns in desired topological ordering Must be an invertible square matrix |
input_type |
specifies what type of matrix 'omega' is. default is "precision", other options include a matrix of partial correlations ("parcor") or a covariance matrix "covariance" |
digits |
desired rounding of the output matrix |
lower triangular matrix containing regression weights of the path model. Element ij represents the effect of X_j on X_i
ryan2019SEset
\insertRefshojaie2010penalizedSEset
\insertRefbollen89semSEset
network_to_SEset
data(riskcor) omega <- (qgraph::EBICglasso(riskcor, n = 69, returnAllResults = TRUE))$optwi # qgraph method estimates a non-symmetric omega matrix, but uses forceSymmetric to create # a symmetric matrix (see qgraph:::EBICglassoCore line 65) omega <- as.matrix(Matrix::forceSymmetric(omega)) # returns the precision matrix B <- network_to_path(omega, digits=2) # Path model can be plotted as a weighted DAG pos <- matrix(c(2,0,-2,-1,-2,1,0,2,0.5,0,0,-2),6,2,byrow=TRUE) # qgraph reads matrix elements as "from row to column" # regression weights matrices are read "from column to row" # path model weights matrix must be transposed for qgraph qgraph::qgraph(t(B), labels=rownames(riskcor), layout=pos, repulsion=.8, vsize=c(10,15), theme="colorblind", fade=FALSE)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.