uniform.crit | R Documentation |
This function calculates the wrap-around discrepancy of a design.
uniform.crit(design)
design |
a design matrix. |
uniform.crit
calculates the wrap-around discrepancy of a design. The wrap-around discrepancy for a design D=[\bm x_1, \dots, \bm x_n]^T
is defined as (Hickernell, 1998):
\phi_{wa} = -\left(\frac{4}{3}\right)^p + \frac{1}{n^2}\sum_{i,j=1}^n\prod_{k=1}^p\left[\frac{3}{2} - |x_{ik}-x_{jk}|(1-|x_{ik}-x_{jk}|)\right].
wrap-around discrepancy of the design
Hickernell, F. (1998), “A generalized discrepancy and quadrature error bound,” Mathematics of computation, 67, 299–322.
n = 20
p = 3
D = randomLHD(n, p)
uniform.crit(D)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.