simico_out | R Documentation |
Calculate test statistic and p-values for multiple outcome test and multiple burden test.
simico_out(nullFit, xDats, lt_all, rt_all, Itt, a1, a2, G, k, d)
nullFit |
Results of the Newton-Raphson: estimates of the beta coefficients. |
xDats |
List of design matrices. |
lt_all |
Matrix containing the generated left interval times. |
rt_all |
Matrix containing the generated right interval times. |
Itt |
I_theta theta - Information matrix of theta. |
G |
n x q matrix of genetic information. |
a1 |
First shape parameter of beta parameter. |
a2 |
Second shape parameter of beta parameter. |
k |
Total number of outcomes. |
d |
Number of quadrature nodes. |
multQ |
Score statistic for multiple outcome test. |
multP |
P-value for multiple outcome test. |
burdQ |
Score statistic for multiple burden test. |
burdP |
P-value for multiple burden test. |
# Set number of outcomes k = 2 # Set number of observations n = 100 # Set number of covariates p = 2 # Set number of SNPs q = 50 # Set number of causal SNPs num = 5 # Set number of quadrature nodes d = 100 # Variance of subject-specific random effect tauSq = 1 # Define the effect sizes effectSizes <- c(.03, .15) # Set MAF cutoff for causal SNPs Causal.MAF.Cutoff = 0.1 # the baseline cumulative hazard function bhFunInv <- function(x) {x} set.seed(1) # Generate covariate matrix xMat <- cbind(rnorm(n), rbinom(n=n, size=1, prob=0.5)) # Generate genetic matrix gMat <- matrix(data=rbinom(n=n*q, size=2, prob=0.1), nrow=n) # Get indices to specific select causal variants idx <- Get_CausalSNPs_bynum(gMat, num, Causal.MAF.Cutoff) # Subset the gMat gMatCausal <- gMat[,idx] # Generate the multiple outcomes exampleDat <- simico_gen_dat(bhFunInv = bhFunInv, obsTimes = 1:3, windowHalf = 0.1, n, p, k, tauSq, gMatCausal, xMat, effectSizes) # Set the initial estimate values init_beta <-c (rep(c(0, 0, 0, 1, 0), k), 1) # Run the newton-raphson nullFit <- simico_fit_null(init_beta = init_beta, epsilon = 10^-5, xDats = exampleDat$fullDat$xDats, lt_all = exampleDat$leftTimesMat, rt_all = exampleDat$rightTimesMat, k = k, d = d) # Get the test statistics p-values out <- simico_out(nullFit = nullFit$beta_fit, xDats = exampleDat$fullDat$xDats, lt_all = exampleDat$leftTimesMat, rt_all = exampleDat$rightTimesMat, Itt = nullFit$jmat, a1 = 1, a2 = 25, G = gMat, k = k, d = d) # Print results # Score statistic out$multQ # P-values out$multP
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.