Nothing
PARTIAL_COEFS <- function(cormat, modelRsq=NULL, verbose=TRUE) {
# for cormat, the DV must be in column 1
NVARs <- nrow(cormat) #- 1
# standardized coefficients
betas <- solve(cormat[2:NVARs,2:NVARs]) %*% cormat[2:NVARs,1]
# partial correlations
partials <- matrix(-9999,(NVARs-1),1)
Rinv <- solve(cormat)
for (luper in 2:NVARs) {
partials[(luper-1),1] <- Rinv[luper,1] / ( -1 * sqrt(Rinv[1,1] * Rinv[luper,luper]) )
}
# semi-partial (part) correlations
# Cohen et al 2003 - Applied Multiple Regression/Correlation Analysis for the Behavioral Sciences p. 102
if (is.null(modelRsq))
modelRsq <- t(solve(cormat[2:NVARs,2:NVARs]) %*% cormat[2:NVARs,1]) %*% cormat[2:NVARs,1]
semipartials <- sqrt( ( partials^2 / (1 - partials^2) ) %*% (1 - modelRsq) )
semipartials <- semipartials * sign(partials)
Rcoefs <- data.frame(beta = betas, r = cormat[2:nrow(cormat),1],
partial.r = partials, semipartial.r = semipartials )
if (verbose) print(Rcoefs)
return(invisible(Rcoefs))
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.