componentCVPatterns: Cross-Validation of Simplivariate Component Patterns

View source: R/componentCVPatterns.R

componentCVPatternsR Documentation

Cross-Validation of Simplivariate Component Patterns

Description

Performs pure cross-validation over specified patterns with mandatory fitters. This function evaluates different pattern fitting models using cross-validation to determine the best model for a given data subset.

Usage

componentCVPatterns(
  df,
  rows,
  cols,
  patternFunctions,
  patternFitters,
  preferenceOrder = names(patternFunctions),
  nRepeats = 40,
  testFraction = 0.2,
  minCellsForModels = 25,
  parsimonyMargin = 0.05,
  requireFitters = TRUE,
  verbose = FALSE
)

Arguments

df

A matrix or data frame containing the data

rows

Row indices to subset from df

cols

Column indices to subset from df

patternFunctions

A named list of pattern functions to evaluate

patternFitters

A named list of fitter functions corresponding to each pattern

preferenceOrder

Character vector specifying the preference order of patterns (default: names of patternFunctions)

nRepeats

Integer, number of cross-validation repeats (default: 40)

testFraction

Numeric, fraction of data to use for testing in each CV fold (default: 0.2)

minCellsForModels

Integer, minimum number of cells required for reliable CV (default: 25)

parsimonyMargin

Numeric, margin for parsimony selection as fraction (default: 0.05)

requireFitters

Logical, whether to require fitters for all patterns (default: TRUE)

verbose

Logical, whether to print progress messages (default: FALSE)

Value

A list containing:

decision

Character, the selected best pattern name

reason

Character, explanation of the selection reasoning

cv

Data frame with CV summary statistics for each model

repeats

Data frame with detailed results from each CV repeat

meta

List with metadata about the CV procedure


SIMPLICA documentation built on Sept. 11, 2025, 1:08 a.m.