SPECK-package | R Documentation |
Surface Protein abundance Estimation using CKmeans-based clustered thresholding ('SPECK') is an unsupervised learning-based method that performs receptor abundance estimation for single cell RNA-sequencing data based on reduced rank reconstruction (RRR) and a clustered thresholding mechanism. Seurat's normalization method is described in: Hao et al., (2021) \Sexpr[results=rd]{tools:::Rd_expr_doi("10.1016/j.cell.2021.04.048")}, Stuart et al., (2019) \Sexpr[results=rd]{tools:::Rd_expr_doi("10.1016/j.cell.2019.05.031")}, Butler et al., (2018) \Sexpr[results=rd]{tools:::Rd_expr_doi("10.1038/nbt.4096")} and Satija et al., (2015) \Sexpr[results=rd]{tools:::Rd_expr_doi("10.1038/nbt.3192")}. Method for the RRR is further detailed in: Erichson et al., (2019) \Sexpr[results=rd]{tools:::Rd_expr_doi("10.18637/jss.v089.i11")} and Halko et al., (2009) arXiv:0909.4061. Clustering method is outlined in: Song et al., (2020) \Sexpr[results=rd]{tools:::Rd_expr_doi("10.1093/bioinformatics/btaa613")} and Wang et al., (2011) \Sexpr[results=rd]{tools:::Rd_expr_doi("10.32614/RJ-2011-015")}.
Maintainer: Azka Javaid azka.javaid.gr@dartmouth.edu
Authors:
H. Robert Frost hildreth.r.frost@dartmouth.edu
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.