Nothing
#' Regression diagnostics
#'
#' @description Provides basic quantities which are used in forming
#' a wide variety of diagnostics for checking the quality of fitted model objects.
#'
#' @param model A fitted model object from [ssn_lm()] or [ssn_glm()].
#' @param ... Other arguments. Not used (needed for generic consistency).
#'
#' @details This function calls [residuals.SSN2()], [hatvalues.SSN2()],
#' and [cooks.distance.SSN2()] and puts the results into a tibble. It is
#' primarily used when calling [augment.SSN2()].
#'
#' @return A tibble with residuals (\code{.resid}), leverage values (\code{.hat}),
#' cook's distance (\code{.cooksd}), and standardized residuals (\code{.std.resid}).
#'
#' @name influence.SSN2
#' @method influence ssn_lm
#' @export
#'
#' @seealso [augment.SSN2()] [cooks.distance.SSN2()] [hatvalues.SSN2()] [residuals.SSN2()]
#'
#' @examples
#' # Copy the mf04p .ssn data to a local directory and read it into R
#' # When modeling with your .ssn object, you will load it using the relevant
#' # path to the .ssn data on your machine
#' copy_lsn_to_temp()
#' temp_path <- paste0(tempdir(), "/MiddleFork04.ssn")
#' mf04p <- ssn_import(temp_path, overwrite = TRUE)
#'
#' ssn_mod <- ssn_lm(
#' formula = Summer_mn ~ ELEV_DEM,
#' ssn.object = mf04p,
#' tailup_type = "exponential",
#' additive = "afvArea"
#' )
#' influence(ssn_mod)
influence.ssn_lm <- function(model, ...) {
tibble::tibble( # used to be data.frame
.resid = residuals(model),
.hat = hatvalues(model),
.cooksd = cooks.distance(model),
.std.resid = residuals(model, type = "standardized") # ,
# .sigma = abs(model$model$y - loocv(model, cv_fitted = TRUE)$cv_fitted)
)
}
#' @rdname influence.SSN2
#' @method influence ssn_glm
#' @export
influence.ssn_glm <- influence.ssn_lm
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.