Nothing
#
#
# test_local <- FALSE # FALSE for CRAN
#
# if (test_local) {
#
# ssn_create_distmat(
# ssn.object = mf04p,
# predpts = c("pred1km", "CapeHorn"),
# overwrite = TRUE
# )
#
# # set a seed
# set.seed(2)
#
# test_that("ssn_glm models fit Gaussian", {
# ssn_mod <- ssn_glm(Summer_mn ~ ELEV_DEM,
# family = "gaussian", mf04p, tailup_type = "exponential",
# taildown_type = "exponential", euclid_type = "exponential",
# nugget_type = "nugget", additive = "afvArea"
# )
# expect_s3_class(ssn_mod, "ssn_lm")
# expect_vector(predict(ssn_mod, "pred1km"))
# })
#
# test_that("ssn_glm models fit poisson", {
# ssn_mod <- ssn_glm(round(Summer_mn) ~ ELEV_DEM,
# family = "poisson", mf04p, tailup_type = "exponential",
# taildown_type = "exponential", euclid_type = "exponential",
# nugget_type = "nugget", additive = "afvArea"
# )
# expect_s3_class(ssn_mod, "ssn_glm")
# expect_vector(predict(ssn_mod, "pred1km"))
# })
#
# test_that("ssn_glm models fit negative binomial", {
# ssn_mod <- ssn_glm(round(Summer_mn) ~ ELEV_DEM,
# family = "nbinomial", mf04p, tailup_type = "exponential",
# nugget_type = "nugget", additive = "afvArea"
# )
# expect_s3_class(ssn_mod, "ssn_glm")
# expect_vector(predict(ssn_mod, "pred1km"))
# })
#
# test_that("ssn_glm models fit binomial", {
# ssn_mod <- ssn_glm(Summer_mn > 11 ~ ELEV_DEM,
# family = "binomial", mf04p, tailup_type = "exponential",
# taildown_type = "exponential", euclid_type = "exponential",
# nugget_type = "nugget", additive = "afvArea", estmethod = "ml"
# )
# expect_s3_class(ssn_mod, "ssn_glm")
# expect_vector(predict(ssn_mod, "pred1km"))
# })
#
# test_that("ssn_glm models fit beta", {
# mf04p$obs$betavar <- runif(NROW(mf04p$obs), min = 0.25, max = 0.75)
# ssn_mod <- ssn_glm(betavar ~ ELEV_DEM,
# family = "beta", mf04p,
# taildown_type = "exponential", euclid_type = "exponential",
# nugget_type = "nugget"
# )
# expect_s3_class(ssn_mod, "ssn_glm")
# expect_vector(predict(ssn_mod, "pred1km"))
# })
#
# test_that("ssn_glm models fit gamma", {
# ssn_mod <- ssn_glm(Summer_mn ~ ELEV_DEM,
# family = "Gamma", mf04p, tailup_type = "exponential",
# nugget_type = "none", additive = "afvArea"
# )
# expect_s3_class(ssn_mod, "ssn_glm")
# expect_vector(predict(ssn_mod, "pred1km"))
# })
#
# test_that("ssn_glm models fit inverse gaussian", {
# ssn_mod <- ssn_glm(Summer_mn ~ ELEV_DEM, mf04p, inverse.gaussian,
# euclid_type = "exponential",
# nugget_type = "nugget",
# )
# expect_s3_class(ssn_mod, "ssn_glm")
# expect_vector(predict(ssn_mod, "pred1km"))
# })
#
#
# test_that("random effects work", {
# ssn_mod <- ssn_glm(Summer_mn > 11 ~ ELEV_DEM, mf04p,
# family = "binomial", tailup_type = "exponential",
# taildown_type = "exponential",
# nugget_type = "nugget", additive = "afvArea",
# random = ~ as.factor(netID)
# )
# expect_s3_class(ssn_mod, "ssn_glm")
# expect_vector(predict(ssn_mod, "pred1km"))
# })
#
# test_that("partition factors work", {
# ssn_mod <- ssn_glm(Summer_mn > 11 ~ ELEV_DEM, mf04p,
# family = "binomial",
# taildown_type = "exponential",
# partition_factor = ~ as.factor(netID)
# )
# expect_s3_class(ssn_mod, "ssn_glm")
# expect_vector(predict(ssn_mod, "pred1km"))
# })
#
# test_that("anisotropy works", {
# ssn_mod <- ssn_glm(Summer_mn > 11 ~ ELEV_DEM, mf04p,
# family = "binomial", tailup_type = "exponential",
# euclid_type = "exponential",
# nugget_type = "nugget", additive = "afvArea",
# anisotropy = TRUE
# )
# expect_s3_class(ssn_mod, "ssn_glm")
# expect_vector(predict(ssn_mod, "pred1km"))
# })
#
# test_that("fixing parameters works", {
# tu <- tailup_initial("exponential", de = 1, known = "de")
# ssn_mod <- ssn_glm(Summer_mn > 11 ~ ELEV_DEM, mf04p,
# family = "binomial", tailup_initial = tu,
# taildown_type = "exponential",
# nugget_type = "nugget", additive = "afvArea"
# )
# expect_s3_class(ssn_mod, "ssn_glm")
# expect_vector(predict(ssn_mod, "pred1km"))
# expect_equal(coef(ssn_mod, type = "tailup")[["de"]], 1)
# })
#
# test_that("missing data works", {
# mf04p$obs$Summer_mn[1] <- NA
# ssn_mod <- ssn_glm(Summer_mn > 11 ~ ELEV_DEM, mf04p,
# family = "binomial",
# taildown_type = "exponential",
# nugget_type = "nugget"
# )
# expect_s3_class(ssn_mod, "ssn_glm")
# expect_vector(predict(ssn_mod, "pred1km"))
# expect_vector(predict(ssn_mod, ".missing"))
# })
#
# # previously from test-extras
# test_that("extra test fits", {
# ssn_mod <- ssn_glm(Summer_mn > 11 ~ ELEV_DEM, mf04p, family = "binomial",
# tailup_type = "exponential", additive = "afvArea",
# estmethod = "ml")
# expect_s3_class(ssn_mod, "ssn_glm")
#
# ssn_mod <- ssn_glm(round(Summer_mn) ~ ELEV_DEM, mf04p, family = "poisson",
# taildown_type = "exponential")
# expect_s3_class(ssn_mod, "ssn_glm")
#
# ssn_mod <- ssn_glm(round(Summer_mn) ~ ELEV_DEM, mf04p, family = "nbinomial",
# euclid_type = "exponential")
# expect_s3_class(ssn_mod, "ssn_glm")
#
# ssn_mod <- ssn_glm(Summer_mn ~ ELEV_DEM, mf04p, family = "inverse.gaussian",
# tailup_type = "exponential", additive = "afvArea")
# expect_s3_class(ssn_mod, "ssn_glm")
#
# ssn_mod <- ssn_glm(ratio ~ ELEV_DEM, mf04p, family = "beta",
# taildown_type = "exponential")
# expect_s3_class(ssn_mod, "ssn_glm")
# })
# }
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.