Nothing
test_that("blank test", {
expect_null(NULL)
})
test_local <- FALSE # FALSE for CRAN
if (test_local) {
# Copy the mf04p .ssn data to a local directory and read it into R
# When modeling with your .ssn object, you will load it using the relevant
# path to the .ssn data on your machine
copy_lsn_to_temp()
temp_path <- paste0(tempdir(), "/MiddleFork04.ssn")
mf04p <- ssn_import(
temp_path,
predpts = c("pred1km", "CapeHorn", "Knapp"),
overwrite = TRUE
)
ssn_create_distmat(
ssn.object = mf04p,
predpts = c("pred1km", "CapeHorn", "Knapp"),
overwrite = TRUE
)
# set a seed
set.seed(2)
test_that("ssn_glm models fit Gaussian", {
ssn_mod <- ssn_glm(Summer_mn ~ ELEV_DEM,
family = "gaussian", mf04p, tailup_type = "exponential",
taildown_type = "exponential", euclid_type = "exponential",
nugget_type = "nugget", additive = "afvArea"
)
expect_s3_class(ssn_mod, "ssn_lm")
expect_vector(predict(ssn_mod, "pred1km"))
})
test_that("ssn_glm models fit poisson", {
ssn_mod <- ssn_glm(round(Summer_mn) ~ ELEV_DEM,
family = "poisson", mf04p, tailup_type = "exponential",
taildown_type = "exponential", euclid_type = "exponential",
nugget_type = "nugget", additive = "afvArea"
)
expect_s3_class(ssn_mod, "ssn_glm")
expect_vector(predict(ssn_mod, "pred1km"))
})
test_that("ssn_glm models fit negative binomial", {
ssn_mod <- ssn_glm(round(Summer_mn) ~ ELEV_DEM,
family = "nbinomial", mf04p, tailup_type = "exponential",
nugget_type = "nugget", additive = "afvArea"
)
expect_s3_class(ssn_mod, "ssn_glm")
expect_vector(predict(ssn_mod, "pred1km"))
})
test_that("ssn_glm models fit binomial", {
ssn_mod <- ssn_glm(Summer_mn > 11 ~ ELEV_DEM,
family = "binomial", mf04p, tailup_type = "exponential",
taildown_type = "exponential", euclid_type = "exponential",
nugget_type = "nugget", additive = "afvArea", estmethod = "ml"
)
expect_s3_class(ssn_mod, "ssn_glm")
expect_vector(predict(ssn_mod, "pred1km"))
})
test_that("ssn_glm models fit beta", {
mf04p$obs$betavar <- runif(NROW(mf04p$obs), min = 0.25, max = 0.75)
ssn_mod <- ssn_glm(betavar ~ ELEV_DEM,
family = "beta", mf04p,
taildown_type = "exponential", euclid_type = "exponential",
nugget_type = "nugget"
)
expect_s3_class(ssn_mod, "ssn_glm")
expect_vector(predict(ssn_mod, "pred1km"))
})
test_that("ssn_glm models fit gamma", {
ssn_mod <- ssn_glm(Summer_mn ~ ELEV_DEM,
family = "Gamma", mf04p, tailup_type = "exponential",
nugget_type = "none", additive = "afvArea"
)
expect_s3_class(ssn_mod, "ssn_glm")
expect_vector(predict(ssn_mod, "pred1km"))
})
test_that("ssn_glm models fit inverse gaussian", {
ssn_mod <- ssn_glm(Summer_mn ~ ELEV_DEM, mf04p, inverse.gaussian,
euclid_type = "exponential",
nugget_type = "nugget",
)
expect_s3_class(ssn_mod, "ssn_glm")
expect_vector(predict(ssn_mod, "pred1km"))
})
test_that("random effects work", {
ssn_mod <- ssn_glm(Summer_mn > 11 ~ ELEV_DEM, mf04p,
family = "binomial", tailup_type = "exponential",
taildown_type = "exponential",
nugget_type = "nugget", additive = "afvArea",
random = ~ as.factor(netID)
)
expect_s3_class(ssn_mod, "ssn_glm")
expect_vector(predict(ssn_mod, "pred1km"))
})
test_that("partition factors work", {
ssn_mod <- ssn_glm(Summer_mn > 11 ~ ELEV_DEM, mf04p,
family = "binomial",
taildown_type = "exponential",
partition_factor = ~ as.factor(netID)
)
expect_s3_class(ssn_mod, "ssn_glm")
expect_vector(predict(ssn_mod, "pred1km"))
})
test_that("anisotropy works", {
ssn_mod <- ssn_glm(Summer_mn > 11 ~ ELEV_DEM, mf04p,
family = "binomial", tailup_type = "exponential",
euclid_type = "exponential",
nugget_type = "nugget", additive = "afvArea",
anisotropy = TRUE
)
expect_s3_class(ssn_mod, "ssn_glm")
expect_vector(predict(ssn_mod, "pred1km"))
})
test_that("fixing parameters works", {
tu <- tailup_initial("exponential", de = 1, known = "de")
ssn_mod <- ssn_glm(Summer_mn > 11 ~ ELEV_DEM, mf04p,
family = "binomial", tailup_initial = tu,
taildown_type = "exponential",
nugget_type = "nugget", additive = "afvArea"
)
expect_s3_class(ssn_mod, "ssn_glm")
expect_vector(predict(ssn_mod, "pred1km"))
expect_equal(coef(ssn_mod, type = "tailup")[["de"]], 1)
})
test_that("missing data works", {
mf04p$obs$Summer_mn[1] <- NA
ssn_mod <- ssn_glm(Summer_mn > 11 ~ ELEV_DEM, mf04p,
family = "binomial",
taildown_type = "exponential",
nugget_type = "nugget"
)
expect_s3_class(ssn_mod, "ssn_glm")
expect_vector(predict(ssn_mod, "pred1km"))
expect_vector(predict(ssn_mod, ".missing"))
})
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.