Description Usage Arguments Value Author(s) References See Also Examples

Log5 is a way to estimate the probability that Team A will win a game given the true winning probabilities of Team A and Team B

1 |

`pA` |
Probability that A wins |

`pB` |
Probability that B wins |

`order` |
0 = A over B and 1 = B over A |

Returns a value equal to (pA-pA*pB)/(pA+pB-2*pA*pB)

Fernando Crema, Peter Xenopoulos

https://en.wikipedia.org/wiki/Log5

pyth

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 | ```
## Let's assume team A has a .60 true probability of winning
## Let's assume team B has a .40 true probability of winning
## We should get an output of 0.6923
log5(.60,.40)
## The function is currently defined as
function (pA, pB, order = 0)
{
if (order) {
aux = pB
pB = pA
pA = aux
}
log5 <- (pA - pA * pB)/(pA + pB - 2 * pA * pB)
return(log5)
}
``` |

Sabermetrics documentation built on Jan. 15, 2017, 7:34 p.m.

Embedding an R snippet on your website

Add the following code to your website.

For more information on customizing the embed code, read Embedding Snippets.