Nothing
#' Univariate Slice Sampler from Neal (2008)
#'
#' Compute a draw from a univariate distribution using the code provided by
#' Radford M. Neal. The documentation below is also reproduced from Neal (2008).
#'
#' @param x0 Initial point
#' @param g Function returning the log of the probability density (plus constant)
#' @param w Size of the steps for creating interval (default 1)
#' @param m Limit on steps (default infinite)
#' @param lower Lower bound on support of the distribution (default -Inf)
#' @param upper Upper bound on support of the distribution (default +Inf)
#' @param gx0 Value of g(x0), if known (default is not known)
#'
#' @return The point sampled, with its log density attached as an attribute.
#'
#' @note The log density function may return -Inf for points outside the support
#' of the distribution. If a lower and/or upper bound is specified for the
#' support, the log density function will not be called outside such limits.
uni.slice <- function (x0, g, w=1, m=Inf, lower=-Inf, upper=+Inf, gx0=NULL)
{
# Check the validity of the arguments.
if (!is.numeric(x0) || length(x0)!=1
|| !is.function(g)
|| !is.numeric(w) || length(w)!=1 || w<=0
|| !is.numeric(m) || !is.infinite(m) && (m<=0 || m>1e9 || floor(m)!=m)
|| !is.numeric(lower) || length(lower)!=1 || x0<lower
|| !is.numeric(upper) || length(upper)!=1 || x0>upper
|| upper<=lower
|| !is.null(gx0) && (!is.numeric(gx0) || length(gx0)!=1))
{
stop ("Invalid slice sampling argument")
}
# Keep track of the number of calls made to this function.
#uni.slice.calls <<- uni.slice.calls + 1
# Find the log density at the initial point, if not already known.
if (is.null(gx0))
{ #uni.slice.evals <<- uni.slice.evals + 1
gx0 <- g(x0)
}
# Determine the slice level, in log terms.
logy <- gx0 - rexp(1)
# Find the initial interval to sample from.
u <- runif(1,0,w)
L <- x0 - u
R <- x0 + (w-u) # should guarantee that x0 is in [L,R], even with roundoff
# Expand the interval until its ends are outside the slice, or until
# the limit on steps is reached.
if (is.infinite(m)) # no limit on number of steps
{
repeat
{ if (L<=lower) break
#uni.slice.evals <<- uni.slice.evals + 1
if (g(L)<=logy) break
L <- L - w
}
repeat
{ if (R>=upper) break
#uni.slice.evals <<- uni.slice.evals + 1
if (g(R)<=logy) break
R <- R + w
}
}
else if (m>1) # limit on steps, bigger than one
{
J <- floor(runif(1,0,m))
K <- (m-1) - J
while (J>0)
{ if (L<=lower) break
#uni.slice.evals <<- uni.slice.evals + 1
if (g(L)<=logy) break
L <- L - w
J <- J - 1
}
while (K>0)
{ if (R>=upper) break
#uni.slice.evals <<- uni.slice.evals + 1
if (g(R)<=logy) break
R <- R + w
K <- K - 1
}
}
# Shrink interval to lower and upper bounds.
if (L<lower)
{ L <- lower
}
if (R>upper)
{ R <- upper
}
# Sample from the interval, shrinking it on each rejection.
repeat
{
x1 <- runif(1,L,R)
#uni.slice.evals <<- uni.slice.evals + 1
gx1 <- g(x1)
if (gx1>=logy) break
if (x1>x0)
{ R <- x1
}
else
{ L <- x1
}
}
# Return the point sampled, with its log density attached as an attribute.
attr(x1,"log.density") <- gx1
return (x1)
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.