| skewhypFit | R Documentation |
Fits a skew hyperbolic t-distribution to given data. Displays the histogram, log-histogram (both with fitted densities), Q-Q plot and P-P plot for the fit which has maximum likelihood.
skewhypFit(x, freq = NULL, breaks = NULL, startValues = "LA",
paramStart = NULL, method = "Nelder-Mead", hessian = TRUE,
plots = FALSE, printOut = TRUE, controlBFGS = list(maxit = 200),
controlNM = list(maxit = 1000), maxitNLM = 1500, ...)
## S3 method for class 'skewhypFit'
plot(x, which = 1:4,
plotTitles = paste(c("Histogram of ", "Log-Histogram of ",
"Q-Q Plot of ", "P-P Plot of "), x$obsName, sep = ""),
ask = prod(par("mfcol")) < length(which) && dev.interactive(), ...)
## S3 method for class 'skewhypFit'
print(x,digits = max(3, getOption("digits") - 3),...)
x |
Data vector for |
freq |
Vector of weights with length equal to length of |
breaks |
Breaks for histogram, defaults to those generated by
|
startValues |
Code giving the method of determining starting values for finding the maximum likelihood estimates of the parameters. |
paramStart |
If |
method |
Different optimisation methods to consider, see Details. |
hessian |
Logical; if |
plots |
Logical; if |
printOut |
Logical; if |
controlBFGS |
A list of control parameters for |
controlNM |
A list of control parameters for |
maxitNLM |
A positive integer specifying the maximum number of
iterations when using the |
which |
If a subset of plots is required, specify a subset of the
numbers |
plotTitles |
Titles to appear above the plots. |
ask |
Logical; if |
digits |
Desired number of digits when the object is printed. |
... |
Passes arguments to |
startValues can be either "US"(User-supplied) or
"LA" (Linear approximation)
If startValues = "US" then a value for paramStart must be
supplied. For the details concerning the use of startValues
and paramStart see skewhypFitStart.
The three optimisation methods currently available are:
"BFGS"Uses the quasi-Newton method "BFGS" as
documented in optim.
"Nelder-Mead"Uses an implementation of the Nelder and
Mead method as documented in optim.
"nlm"Uses the nlm function in R.
For the details of how to pass control information using
optim and nlm, see optim and
nlm.
skewhypFit returns a list with components:
param |
A vector giving the maximum likelihood estimates of the
parameters in the form |
maxLik |
The value of the maximised log-likelihood. |
hessian |
If |
method |
Optimisation method used. |
conv |
Convergence code. See |
iter |
Number of iterations of optimisation routine. |
x |
The data used to fit the distribution. |
xName |
Character string with the actual |
paramStart |
Starting values of the parameters returned by
|
svName |
Name of the method used to find starting values. |
startValues |
Acronym of method used to find starting values. |
breaks |
Cell boundaries found by a call to |
midpoints |
The cell midpoints found by a call to
|
empDens |
The estimated density found by a call to
|
David Scott d.scott@auckland.ac.nz, Fiona Grimson
Aas, K. and Haff, I. H. (2006). The Generalised Hyperbolic Skew Student's t-distribution, Journal of Financial Econometrics, 4, 275–309.
optim, nlm, par,
hist, density,
logHist,
qqskewhyp, ppskewhyp,
dskewhyp and skewhypFitStart.
## See how well skewhypFit works
param <- c(0, 1, 4, 10)
data <- rskewhyp(500, param = param)
fit <- skewhypFit(data)
## Use data set NOK/EUR as per Aas&Haff
data(lrnokeur)
nkfit <- skewhypFit(lrnokeur, method = "nlm")
## Use data set DJI
data(lrdji)
djfit <- skewhypFit(lrdji)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.