case0902: Why Do Some Mammals Have Large Brains for Their Size?

case0902R Documentation

Why Do Some Mammals Have Large Brains for Their Size?

Description

The data are the average values of brain weight, body weight, gestation lengths (length of pregnancy) and litter size for 96 species of mammals.

Usage

case0902

Format

A data frame with 96 observations on the following 5 variables.

Species

species

Brain

average brain weight (in grams)

Body

average body weight (in kilograms)

Gestation

gestation period (in days)

Litter

average litter size

Source

Ramsey, F.L. and Schafer, D.W. (2013). The Statistical Sleuth: A Course in Methods of Data Analysis (3rd ed), Cengage Learning.

See Also

ex0333

Examples

str(case0902)
attach(case0902)

## EXPLORATION                                                                   
myMatrix      <- cbind(Brain, Body, Litter, Gestation)  
if(require(car)){   # Use the car library
scatterplotMatrix(myMatrix,   # Matrix of scatterplots
  smooth=FALSE,    # Omit scatterplot smoother on plots
  diagonal="histogram") # Draw histograms on diagonals
  } 
myLm <- lm(Brain ~ Body + Litter + Gestation)
plot(myLm, which=1)  
logBrain <- log(Brain)
logBody <- log(Body)
logGestation  <- log(Gestation)
myMatrix2 <- cbind(logBrain,logBody,Litter, logGestation) 
if(require(car)){   # Use the car library
  scatterplotMatrix(myMatrix2, smooth=FALSE, diagonal="histogram")  
}
myLm2 <- lm(logBrain ~ logBody + Litter + logGestation)
plot(myLm2,which=1)  # Residual plot.

if(require(car)){   # Use the car library
crPlots(myLm2)  # Partial residual plots (Sleuth Ch.11) 
}
plot(logBrain ~ logBody)
identify(logBrain ~ logBody,labels=Species)   # Identify points on  scatterplot  
# Place the cursor over a point of interest, then left-click.
# Continue with other points if desired. When finished, pres Esc. 

## INFERENCE
summary(myLm2)           
confint(myLm2)           

# DISPLAYS FOR PRESENTATION 
myLm3 <- lm(logBrain ~ logBody + logGestation)
beta <- myLm3$coef
logBrainAdjusted  <- logBrain - beta[2]*logBody  
y <- exp(logBrainAdjusted) 
ymod <- 100*y/median(y) 
plot(ymod ~ Gestation, log="xy",  
  xlab="Average Gestation Length (Days); Log Scale",
  ylab="Brain Weight Adjusted for Body Weight, as a Percentage of the Median", 
  main="Brain Weight Adjusted for Body Weight, Versus Gestation Length, for 96 Mammal Species",
  pch=21,bg="green",cex=1.3)
identify(ymod ~ Gestation,labels=Species, cex=.7) # Identify points, as desired
# Press Esc to complete identify.
abline(h=100,lty=2) # Draw horizontal line at 100%
  
myLm4 <- lm(logBrain ~ logBody + Litter)
beta  <- myLm4$coef
logBrainAdjusted <- logBrain - beta[2]*logBody  
y2 <- exp(logBrainAdjusted)
y2mod <- 100*y2/median(y2)
plot(y2mod ~ Litter, log="y", xlab="Average Litter Size",
  ylab="Brain Weight Adjusted for Body Weight, as a Percentage of the Median",
  main="Brain Weight Adjusted for Body Weight, Versus Litter Size, for 96 Mammal Species",
  pch=21,bg="green",cex=1.3)
identify(y2mod ~ Litter,labels=Species, cex=.7)  
abline(h=100,lty=2)

detach(case0902)

Sleuth3 documentation built on May 29, 2024, 2:56 a.m.