Nothing
## ----include = FALSE----------------------------------------------------------
knitr::opts_chunk$set(
collapse = TRUE,
comment = "#>"
)
## ----eval = FALSE-------------------------------------------------------------
# library(SpaCOAP)
## ----eval = FALSE-------------------------------------------------------------
# width <- 20; height <- 30
# n <- width*height
# p=500
# q = 5; d <- 40; k <- 3; r <- 3
# bandwidth <- 1
# rho<- c(8,0.6)
# sigma2_eps=1
# datlist <- gendata_spacoap(seed=1, width=width, height = height,
# p=p, q=q, d=d, k=k, rank0 = r, bandwidth=1,
# eta0 = 0.5, rho=rho, sigma2_eps=sigma2_eps)
# X_count <- datlist$X; H <- datlist$H; Z <- datlist$Z
# F0 <- datlist$F0; B0 <- datlist$B0
# bbeta0 <- datlist$bbeta0; alpha0 <- datlist$alpha0
# Adj_sp <- SpaCOAP:::getneighbor_weightmat(datlist$pos, 1.1, bandwidth)
## ----eval = FALSE-------------------------------------------------------------
# reslist <- SpaCOAP(X_count,Adj_sp, H, Z = Z, rank_use = r, q=q)
# str(reslist)
## ----eval = FALSE-------------------------------------------------------------
# library(ggplot2)
# dat_iter <- data.frame(iter=1:length(reslist$ELBO_seq[-1]), ELBO=reslist$ELBO_seq[-1])
# ggplot(data=dat_iter, aes(x=iter, y=ELBO)) + geom_line() + geom_point() + theme_bw(base_size = 20)
#
## ----eval = FALSE-------------------------------------------------------------
# norm1_vec <- function(x) mean(abs(x))
# trace_statistic_fun <- function(H, H0){
#
# tr_fun <- function(x) sum(diag(x))
# mat1 <- t(H0) %*% H %*% qr.solve(t(H) %*% H) %*% t(H) %*% H0
#
# tr_fun(mat1) / tr_fun(t(H0) %*% H0)
#
# }
## ----eval = FALSE-------------------------------------------------------------
# metricList <- list()
# metricList$SpaCOAP <- list()
# metricList$SpaCOAP$F_tr <- trace_statistic_fun(reslist$F, F0)
# metricList$SpaCOAP$B_tr <- trace_statistic_fun(reslist$B, B0)
# metricList$SpaCOAP$alpha_norm1 <- norm1_vec(reslist$alpha- alpha0)/mean(abs(alpha0))
# metricList$SpaCOAP$beta_norm1<- norm1_vec(reslist$bbeta- bbeta0)/mean(abs(bbeta0))
# metricList$SpaCOAP$time <- reslist$time_use
## ----eval = FALSE-------------------------------------------------------------
# library(COAP)
# tic <- proc.time()
# res_coap <- RR_COAP(X_count, Z = cbind(Z, H), rank_use= k+r, q=5, epsELBO = 1e-9)
# toc <- proc.time()
# time_coap <- toc[3] - tic[3]
# metricList$COAP$F_tr <- trace_statistic_fun(res_coap$H, F0)
# metricList$COAP$B_tr <- trace_statistic_fun(res_coap$B, B0)
# alpha_coap <- res_coap$bbeta[,1:k]
# beta_coap <- res_coap$bbeta[,(k+1):(k+d)]
# metricList$COAP$alpha_norm1 <- norm1_vec(alpha_coap- alpha0)/mean(abs(alpha0))
# metricList$COAP$beta_norm1 <- norm1_vec(beta_coap- bbeta0)/mean(abs(bbeta0))
# metricList$COAP$time <- time_coap
## ----eval = FALSE-------------------------------------------------------------
#
# PLNPCA_run <- function(X_count, covariates, q, Offset=rep(1, nrow(X_count)), workers=NULL,
# maxIter=10000,ftol_rel=1e-8, xtol_rel= 1e-4){
# require(PLNmodels)
# if(!is.null(workers)){
# future::plan("multisession", workers = workers)
# }
# if(!is.character(Offset)){
# dat_plnpca <- prepare_data(X_count, covariates)
# dat_plnpca$Offset <- Offset
# }else{
# dat_plnpca <- prepare_data(X_count, covariates, offset = Offset)
# }
#
# d <- ncol(covariates)
# # offset(log(Offset))+
# formu <- paste0("Abundance ~ 1 + offset(log(Offset))+",paste(paste0("V",1:d), collapse = '+'))
# control_use <- list(maxeval=maxIter, ftol_rel=ftol_rel, xtol_rel= ftol_rel)
# control_main <- PLNPCA_param(
# backend = "nlopt",
# trace = 1,
# config_optim = control_use,
# inception = NULL
# )
#
# myPCA <- PLNPCA(as.formula(formu), data = dat_plnpca, ranks = q, control = control_main)
#
# myPCA1 <- getBestModel(myPCA)
# myPCA1$scores
#
# res_plnpca <- list(PCs= myPCA1$scores, bbeta= myPCA1$model_par$B,
# loadings=myPCA1$model_par$C)
#
# return(res_plnpca)
# }
#
# tic <- proc.time()
# res_plnpca <- PLNPCA_run(X_count, cbind(Z[,-1],H), q=q)
# toc <- proc.time()
# time_plnpca <- toc[3] - tic[3]
#
# metricList$PLNPCA$F_tr <- trace_statistic_fun(res_plnpca$PCs, F0)
# metricList$PLNPCA$B_tr <- trace_statistic_fun(res_plnpca$loadings, B0)
# alpha_plnpca <- t(res_plnpca$bbeta[1:k,])
# beta_plnpca <- t(res_plnpca$bbeta[(k+1):(k+d),])
# metricList$PLNPCA$alpha_norm1 <- norm1_vec(alpha_plnpca- alpha0)/mean(abs(alpha0))
# metricList$PLNPCA$beta_norm1 <- norm1_vec(beta_plnpca- bbeta0)/mean(abs(bbeta0))
# metricList$PLNPCA$time <- time_plnpca
## ----eval = FALSE-------------------------------------------------------------
# ## MRRR
# ## Compare with MRRR
# mrrr_run <- function(Y, X, rank0, q=NULL, family=list(poisson()),
# familygroup=rep(1,ncol(Y)), epsilon = 1e-4, sv.tol = 1e-2,
# maxIter = 2000, trace=TRUE, truncflag=FALSE, trunc=500){
# # epsilon = 1e-4; sv.tol = 1e-2; maxIter = 30; trace=TRUE
# # Y <- X_count; X <- cbind(Z, H); rank0 = r + ncol(Z)
#
# require(rrpack)
#
# n <- nrow(Y); p <- ncol(Y)
#
# if(!is.null(q)){
# rank0 <- rank0+q
# X <- cbind(X, diag(n))
# }
# if(truncflag){
# ## Trunction
# Y[Y>trunc] <- trunc
#
# }
#
# svdX0d1 <- svd(X)$d[1]
# init1 = list(kappaC0 = svdX0d1 * 5)
# offset = NULL
# control = list(epsilon = epsilon, sv.tol = sv.tol, maxit = maxIter,
# trace = trace, gammaC0 = 1.1, plot.cv = TRUE,
# conv.obj = TRUE)
# fit.mrrr <- mrrr(Y=Y, X=X[,-1], family = family, familygroup = familygroup,
# penstr = list(penaltySVD = "rankCon", lambdaSVD = 1),
# control = control, init = init1, maxrank = rank0)
#
# return(fit.mrrr)
# }
# tic <- proc.time()
# res_mrrr <- mrrr_run(X_count, cbind(Z,H), r+ncol(Z), q=q, truncflag= TRUE, trunc=1e4)
# toc <- proc.time()
# time_mrrr <- toc[3] - tic[3]
#
## ----eval = FALSE-------------------------------------------------------------
# hbbeta_mrrr <-t(res_mrrr$coef[1:ncol(cbind(Z,H)), ])
# Theta_hb <- (res_mrrr$coef[(ncol(cbind(Z,H))+1): (nrow(cbind(Z,H))+ncol(cbind(Z,H))), ])
# svdTheta <- svd(Theta_hb, nu=q, nv=q)
# metricList$MRRR$F_tr <- trace_statistic_fun(svdTheta$u, F0)
# metricList$MRRR$B_tr <- trace_statistic_fun(svdTheta$v, B0)
# alpha_mrrr <- hbbeta_mrrr[,1:k]
# beta_mrrr <- hbbeta_mrrr[,(k+1):(k+d)]
# metricList$MRRR$alpha_norm1 <- norm1_vec(alpha_mrrr- alpha0)/mean(abs(alpha0))
# metricList$MRRR$beta_norm1 <- norm1_vec(beta_mrrr- bbeta0)/mean(abs(bbeta0))
# metricList$MRRR$time <- time_mrrr
## ----eval =FALSE--------------------------------------------------------------
# ## FAST
# fast_run <- function(X_count, Adj_sp, q, verbose=TRUE, epsELBO=1e-8){
# require(ProFAST)
#
# reslist <- FAST_run(XList = list(X_count),
# AdjList = list(Adj_sp), q = q, fit.model = 'poisson',
# verbose=verbose, epsLogLik=epsELBO)
# reslist$hV <- reslist$hV[[1]]
# return(reslist)
# }
# tic <- proc.time()
# res_fast <- fast_run(X_count, Adj_sp, q=q, verbose=TRUE, epsELBO=1e-8)
# toc <- proc.time()
# time_fast <- toc[3] - tic[3]
# metricList$FAST$F_tr <- trace_statistic_fun(res_fast$hV, F0)
# metricList$FAST$B_tr <- trace_statistic_fun(res_fast$W, B0)
# metricList$FAST$time <- time_fast
#
## ----eval = FALSE-------------------------------------------------------------
# list2vec <- function(xlist){
# nn <- length(xlist)
# me <- rep(NA, nn)
# idx_noNA <- which(sapply(xlist, function(x) !is.null(x)))
# for(r in idx_noNA) me[r] <- xlist[[r]]
# return(me)
# }
#
# dat_metric <- data.frame(Tr_F = sapply(metricList, function(x) x$F_tr),
# Tr_B = sapply(metricList, function(x) x$B_tr),
# err_alpha =list2vec(lapply(metricList, function(x) x$alpha_norm1)),
# err_beta = list2vec(lapply(metricList, function(x) x$beta_norm1)),
# time = sapply(metricList, function(x) x$time),
# Method = names(metricList))
# dat_metric$Method <- factor(dat_metric$Method, levels=dat_metric$Method)
## ----eval = FALSE, fig.width=9, fig.height=6----------------------------------
# library(cowplot)
# p1 <- ggplot(data=subset(dat_metric, !is.na(Tr_B)), aes(x= Method, y=Tr_B, fill=Method)) + geom_bar(stat="identity") + xlab(NULL) + scale_x_discrete(breaks=NULL) + theme_bw(base_size = 16)
# p2 <- ggplot(data=subset(dat_metric, !is.na(Tr_F)), aes(x= Method, y=Tr_F, fill=Method)) + geom_bar(stat="identity") + xlab(NULL) + scale_x_discrete(breaks=NULL)+ theme_bw(base_size = 16)
# p3 <- ggplot(data=subset(dat_metric, !is.na(err_alpha)), aes(x= Method, y=err_alpha, fill=Method)) + geom_bar(stat="identity") + xlab(NULL) + scale_x_discrete(breaks=NULL)+ theme_bw(base_size = 16)
# p4 <- ggplot(data=subset(dat_metric, !is.na(err_beta)), aes(x= Method, y=err_beta, fill=Method)) + geom_bar(stat="identity") + xlab(NULL) + scale_x_discrete(breaks=NULL)+ theme_bw(base_size = 16)
# plot_grid(p1,p2,p3, p4, nrow=2, ncol=2)
## ----eval = FALSE-------------------------------------------------------------
#
# res1 <- chooseParams(X_count, Adj_sp, H, Z, verbose=FALSE)
#
# print(c(q_true=q, q_est=res1['hq']))
# print(c(r_true=r, r_est=res1['hr']))
## -----------------------------------------------------------------------------
sessionInfo()
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.