Description Usage Arguments Value Note See Also Examples
Returns a checkpointed version of this SparkDataFrame. Checkpointing can be used to truncate the
logical plan, which is especially useful in iterative algorithms where the plan may grow
exponentially. It will be saved to files inside the checkpoint directory set with
setCheckpointDir
1 2 3 4 | checkpoint(x, eager = TRUE)
## S4 method for signature 'SparkDataFrame'
checkpoint(x, eager = TRUE)
|
x |
A SparkDataFrame |
eager |
whether to checkpoint this SparkDataFrame immediately |
a new checkpointed SparkDataFrame
checkpoint since 2.2.0
setCheckpointDir
Other SparkDataFrame functions:
SparkDataFrame-class
,
agg()
,
alias()
,
arrange()
,
as.data.frame()
,
attach,SparkDataFrame-method
,
broadcast()
,
cache()
,
coalesce()
,
collect()
,
colnames()
,
coltypes()
,
createOrReplaceTempView()
,
crossJoin()
,
cube()
,
dapplyCollect()
,
dapply()
,
describe()
,
dim()
,
distinct()
,
dropDuplicates()
,
dropna()
,
drop()
,
dtypes()
,
exceptAll()
,
except()
,
explain()
,
filter()
,
first()
,
gapplyCollect()
,
gapply()
,
getNumPartitions()
,
group_by()
,
head()
,
hint()
,
histogram()
,
insertInto()
,
intersectAll()
,
intersect()
,
isLocal()
,
isStreaming()
,
join()
,
limit()
,
localCheckpoint()
,
merge()
,
mutate()
,
ncol()
,
nrow()
,
persist()
,
printSchema()
,
randomSplit()
,
rbind()
,
rename()
,
repartitionByRange()
,
repartition()
,
rollup()
,
sample()
,
saveAsTable()
,
schema()
,
selectExpr()
,
select()
,
showDF()
,
show()
,
storageLevel()
,
str()
,
subset()
,
summary()
,
take()
,
toJSON()
,
unionAll()
,
unionByName()
,
union()
,
unpersist()
,
withColumn()
,
withWatermark()
,
with()
,
write.df()
,
write.jdbc()
,
write.json()
,
write.orc()
,
write.parquet()
,
write.stream()
,
write.text()
1 2 3 4 5 | ## Not run:
setCheckpointDir("/checkpoint")
df <- checkpoint(df)
## End(Not run)
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.