View source: R/LASSO_HJBiplot.R
LASSO_HJBiplot | R Documentation |
This function performs the representation of the SPARSE HJ Biplot applying the LASSO regularization, on the original data matrix, implementing the norm L1.
LASSO_HJBiplot(X, Lambda, Transform.Data = 'scale', Operator = 'Hard-Thresholding')
X |
array_like; |
Lambda |
float; |
Transform.Data |
character; |
Operator |
character; |
Algorithm that performs a procedure of contraction and selection of variables. LASSO imposes a penalty that causes the charges of some components to be reduced to zero. By producing zero loadings for some components and not zero for others, the Lasso technique performs selection of variables. As the value of the penalty approaches one, the loadings approach zero.
LASSO_HJBiplot
returns a list containing the following components:
loadings |
array_like; |
n_ceros |
array_like; |
coord_ind |
array_like; |
coord_var |
array_like; |
eigenvalues |
array_like; |
explvar |
array_like; |
Mitzi Cubilla-Montilla, Carlos Torres-Cubilla, Ana Belen Nieto Librero and Purificacion Galindo Villardon
Galindo, M. P. (1986). Una alternativa de representacion simultanea: HJ-Biplot. Questiio, 10(1), 13-23.
Tibshirani, R. (1996). Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society: Series B (Methodological), 58(1), 267-288.
Tibshirani, R. (2011). Regression shrinkage and selection via the lasso: a retrospective. Journal of the Royal Statistical Society: Series B (Statistical Methodology), 73(3), 273-282.
Plot_Biplot
LASSO_HJBiplot(mtcars, Lambda = 0.2, Operator = 'Hard-Thresholding')
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.