BIC_sparseICA | R Documentation |
This function uses a BIC-like criterion to select the optimal tuning parameter nu
for Sparse ICA.
BIC_sparseICA(
xData,
n.comp,
nu_list = seq(0.1, 4, 0.1),
whiten = c("eigenvec", "sqrtprec", "none"),
lngca = FALSE,
orth.method = c("svd", "givens"),
method = c("C", "R"),
use_irlba = TRUE,
eps = 1e-06,
maxit = 500,
verbose = FALSE,
col.stand = TRUE,
row.stand = FALSE,
iter.stand = 0,
BIC_plot = FALSE
)
xData |
A numeric matrix of input data with dimensions P x T, where P is the number of features and T is the number of samples. |
n.comp |
An integer specifying the number of components to estimate. |
nu_list |
A numeric vector specifying the list of candidate tuning parameters. Default is |
whiten |
A character string specifying the method for whitening the input |
lngca |
A logical value indicating whether to perform Linear Non-Gaussian Component Analysis (LNGCA). Default is |
orth.method |
A character string specifying the method for generating initial values of the U matrix. Default is |
method |
A character string specifying the computation method. If |
use_irlba |
A logical value indicating whether to use the |
eps |
A numeric value specifying the convergence threshold. Default is |
maxit |
An integer specifying the maximum number of iterations for the Sparse ICA method using Laplace density. Default is 500. |
verbose |
A logical value indicating whether to print convergence information during execution. Default is |
col.stand |
A logical value indicating whether to standardize columns. For each column, the mean of the entries in the column equals 0, and the variance of the entries in the column equals 1. Default is |
row.stand |
A logical value indicating whether to standardize rows. For each row, the mean of the entries in the row equals 0, and the variance of the entries in the row equals 1. Default is |
iter.stand |
An integer specifying the number of iterations for achieving both row and column standardization when |
BIC_plot |
A logical value indicating whether to generate a plot showing the trace of BIC values for different |
A list containing the following elements:
BIC
A numeric vector of BIC values corresponding to each candidate nu
in nu_list
.
nu_list
A numeric vector of candidate tuning parameter values.
best_nu
The optimal nu
selected based on the BIC-like criterion.
#get simulated data
data(example_sim123)
select_sparseICA = BIC_sparseICA(xData = example_sim123$xmat, n.comp = 3,
method="C", BIC_plot = TRUE,verbose = TRUE, nu_list = seq(0.1,4,0.1))
(my_nu = select_sparseICA$best_nu)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.