Split Knockoff is a data adaptive variable selection framework for controlling the (directional) false discovery rate (FDR) in structural sparsity, where variable selection on linear transformation of parameters is of concern. This proposed scheme relaxes the linear subspace constraint to its neighborhood, often known as variable splitting in optimization. Simulation experiments can be reproduced following the Vignette. 'Split Knockoffs' is first defined in Cao et al. (2021) <doi:10.48550/arXiv.2103.16159>.
Package details |
|
---|---|
Author | Yuxuan Chen [aut, cre] (Development of the latest version of the packages), Haoxue Wang [aut] (Development of the first version of the packages), Yang Cao [aut] (Revison of this package), Xinwei Sun [aut] (Original ideas about the package), Yuan Yao [aut] (Testing for the package and management of the development) |
Maintainer | Yuxuan Chen <yx.chen@connect.ust.hk> |
License | MIT + file LICENSE |
Version | 2.1 |
Package repository | View on CRAN |
Installation |
Install the latest version of this package by entering the following in R:
|
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.