sk.filter | R Documentation |
split Knockoff filter for structural sparsity problem
sk.filter(X, D, y, option)
X |
the design matrix |
D |
the response vector |
y |
the linear transformation |
option |
options for creating the Split Knockoff statistics. option$q: the desired FDR control target. option$beta: choices on beta(lambda), can be: 'path', beta(lambda) is taken from a regularization path; 'cv_beta', beta(lambda) is taken as the cross validation optimal estimator hat beta; or 'cv_all', beta(lambda) as well as nu are taken from the cross validation optimal estimators hat beta and hat nu.The default setting is 'cv_all'. option$lambda_cv: a set of lambda appointed for cross validation in estimating hat beta, default 10.^seq(0, -8, by = -0.4). option$nu_cv: a set of nu appointed for cross validation in estimating hat beta and hat nu, default 10.^seq(0, 2, by = 0.4). option$nu: a set of nu used in option.beta = 'path' or 'cv_beta' for Split Knockoffs, default 10.^seq(0, 2, by = 0.2). option$lambda: a set of lambda appointed for Split LASSO path calculation, default 10.^seq(0, -6, by = -0.01). option$normalize: whether to normalize the data, default true. option$W: the W statistics used for Split Knockoffs, can be 's', 'st', 'bc', 'bct', default 'st'. |
various intermedia statistics
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.