qqplot.das | R Documentation |
A QQ (Quantile-Quantile) plot is produced.
qqplot.das(x, distribution = "norm", ylab = deparse(substitute(x)),
xlab = paste(distribution, "quantiles"), main = "", las = par("las"),
datax = FALSE, envelope = 0.95, labels = FALSE, col = palette()[2],
lwd = 2, pch = 1, line = c("quartiles", "robust", "none"), cex = 1,
xaxt = "s", add.plot=FALSE,xlim=NULL,ylim=NULL,...)
x |
numeric vector |
distribution |
name of the comparison distribution |
ylab |
label for the y axis (empirical quantiles) |
xlab |
label for the x axis (comparison quantiles) |
main |
title for the plot |
las |
if 0, ticks labels are drawn parallel to the axis |
datax |
if TRUE, x and y axis are exchanged |
envelope |
confidence level for point-wise confidence envelope, or FALSE for no envelope |
labels |
vector of point labels for interactive point identification, or FALSE for no labels |
col, lwd, pch, cex, xaxt |
graphical parameter, see par |
line |
"quartiles" to pass a line through the quartile-pairs, or "robust" for a robust-regression line. "none" suppresses the line |
add.plot |
if TRUE the new plot is added to an old one |
xlim |
the range for the x-axis |
ylim |
the range for the y-axis |
... |
further arguments for the probability function |
The probability of the input data is computed and with this result the quantiles of the comparison distribution are calculated. If line="quartiles" a line based on quartiles is plotted and if line="robust" a robust LM model is calculated.
No return value, creates a plot.
Peter Filzmoser <P.Filzmoser@tuwien.ac.at> http://cstat.tuwien.ac.at/filz/
C. Reimann, P. Filzmoser, R.G. Garrett, and R. Dutter: Statistical Data Analysis Explained. Applied Environmental Statistics with R. John Wiley and Sons, Chichester, 2008.
par
data(AuNEW)
qqplot.das(AuNEW,distribution="lnorm",col=1,envelope=FALSE,datax=TRUE,ylab="Au",
xlab="Quantiles of lognormal distribution", main="",line="none",pch=3,cex=0.7)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.