IAEISE | R Documentation |
Two ways of the continuous-time approach to continuous-time identification based on least-squares and least-absolute errors are proposed. Integrate Absolute Error and Integrate Square Error.To evaluate the performance of survival models methods Lower values of IAE or ISE indicate better performances.
IAEISE(object, sp_matrix, IRange = c(-2, -1))
object |
object of class |
sp_matrix |
a matrix of predicted values of survival probabilities for the testing set. |
IRange |
a vector contains all discrete time points corresponding to the predicted probability in sp_matrix. Or the scale you want to get the IAE and ISE; . |
Estimates of the IAE and ISE
Hanpu Zhou zhouhanpu@csu.edu.cn
Marron, J. S. , & Wand, M. P. . (1992). Exact mean integrated squared error. Annals of Statistics, 20(2), 712-736.
HooraMoradian, DenisLarocque, & FranoisBellavance. (2017). L1 splitting rules in survival forests. Lifetime Data Analysis, 23(4), 671–691.
Kowalczuk, & Z. (1998). Integrated squared error and integrated absolute error in recursive identification of continuous-time plants. Control 98 Ukacc International Conference on (Vol.1998, pp.693-698). IET.
library(survival)
library(SurvMetrics)
set.seed(123)
N <- 100
mydata <- SDGM4(N, p = 20, c_step = -0.5)
index.train <- sample(1:N, 2 / 3 * N)
data.train <- mydata[index.train, ]
data.test <- mydata[-index.train, ]
time_interest <- sort(data.train$time[data.train$status == 1])
sp_matrix <- matrix(sort(runif(nrow(data.test) * length(time_interest)),
decreasing = TRUE
), nrow = nrow(data.test))
object <- Surv(data.test$time, data.test$status)
# a vector for all the distinct time
IAEISE(object, sp_matrix, time_interest)
# a range
IAEISE(object, sp_matrix, c(12, 350))
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.