Nothing
##' Predict Distances Between Samples Based on a Survival Tree Fit (Data Supplied as Matrices)
##' (Works for raw matrices)
##' @title Predict Distances Between Samples Based on a Survival Tree Fit (Data Supplied as Matrices)
##' @description The function
##' \code{predict_distance_tree_matrix} predicts distances between samples based on a survival tree fit.
##' @param survival_tree a fitted survival tree
##' @param matrix_numeric numeric predictors, a numeric matrix.
##' \code{matrix_numeric[i,j]} is the jth numeric predictor of the ith sample.
##' The best practice is to have the same column names in the training and testing dataset.
##' @param matrix_factor factor predictors, a character matrix.
##' \code{matrix_factor[i,j]} is the jth predictor of the ith sample.
##' The best practice is to have the same column names in the training and testing dataset.
##' @param missing a character value that specifies the handling of missing data.
##' If \code{missing=="omit"}, samples with missing values in the splitting variables will be discarded.
##' If \code{missing=="majority"}, samples with missing values in the splitting variables will be assigned to the majority node.
##' If \code{missing=="weighted"}, samples with missing values in the splitting variables will be weighted by the weights of branch nodes.
##' The best practice is to use the same method as the trained random tree.
##' @return A list.
##' \code{node_distance} gives the distance matrix between nodes.
##' \code{ind_distance} gives the distance matrix between samples.
##' \code{ind_weights} gives the weights of samples in each node.
##' @examples
##' library(survival)
##' a_survival_tree<-
##' survival_tree_matrix(
##' time=lung$time,
##' event=lung$status==2,
##' matrix_numeric=data.matrix(lung[,c(4,6:9),drop=FALSE]),
##' matrix_factor=data.matrix(lung[,5,drop=FALSE]))
##' a_distance<-
##' predict_distance_tree_matrix(
##' a_survival_tree,
##' matrix_numeric=data.matrix(lung[,c(4,6:9),drop=FALSE]),
##' matrix_factor=data.matrix(lung[,5,drop=FALSE]))
predict_distance_tree_matrix<-function(
survival_tree,
matrix_numeric,
matrix_factor,
missing="omit"){
# ndim_numeric<-survival_tree$ndim_numeric
# ndim_factor<-survival_tree$ndim_factor
# nind_test<-nrow(matrix_numeric)
#
# # check dimensions
# if(nrow(matrix_numeric)!=nrow(matrix_factor))stop("'nrow(matrix_numeric)' and 'nrow(matrix_factor) are different.'")
# if(ncol(matrix_numeric)!=ndim_numeric)stop("'ncol(matrix_numeric)' inconsistent with training data.'")
# if(ncol(matrix_factor)!=ndim_factor)stop("'ncol(matrix_factor)' inconsistent with training data.'")
ndim_numeric<-ncol(matrix_numeric)
ndim_factor<-ncol(matrix_factor)
nind_test<-nrow(matrix_numeric)
if(nrow(matrix_numeric)!=nrow(matrix_factor))stop("'nrow(matrix_numeric)' and 'nrow(matrix_factor) are different.'")
if(ndim_numeric!=survival_tree$ndim_numeric)stop("'ncol(matrix_numeric)' inconsistent with training data.'")
if(ndim_factor!=survival_tree$ndim_factor)stop("'ncol(matrix_factor)' inconsistent with training data.'")
# clean [matrix_numeric] and [matrix_factor]
factor_dictionary<-survival_tree$factor_dictionary
matrix_factor_int<-matrix(NA,nind_test,ndim_factor)
if(ncol(matrix_factor)>0){
colnames(matrix_factor_int)<-colnames(matrix_factor)
for(idx in 1:ncol(matrix_factor)){
aname<-colnames(matrix_factor)[idx]
matrix_factor_int[,idx]<-(factor_dictionary[[aname]])[matrix_factor[,aname]]
}
}
matrix_factor<-matrix_factor_int
a_distance<-calculate_distance(
survival_tree$survival_tree,
matrix_numeric,
matrix_factor,
missing)
return(a_distance)
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.