launch_analysis_tad | R Documentation |
Launch distribution analysis
launch_analysis_tad(
weights,
weights_factor,
trait_data,
randomization_number,
aggregation_factor_name = NULL,
statistics_factor_name = NULL,
seed = NULL,
abundance_file = NULL,
weighted_moments_file = NULL,
stat_per_obs_file = NULL,
stat_per_rand_file = NULL,
stat_skr_param_file = NULL,
regenerate_abundance_df = FALSE,
regenerate_weighted_moments_df = FALSE,
regenerate_stat_per_obs_df = FALSE,
regenerate_stat_per_rand_df = FALSE,
regenerate_stat_skr_df = FALSE,
significativity_threshold = CONSTANTS$DEFAULT_SIGNIFICATIVITY_THRESHOLD,
lin_mod = CONSTANTS$DEFAULT_LIN_MOD,
slope_distance = CONSTANTS$DEFAULT_SLOPE_DISTANCE,
intercept_distance = CONSTANTS$DEFAULT_INTERCEPT_DISTANCE,
csv_tsv_load_parameters = list()
)
weights |
the dataframe of weights, one row correspond to a series of observation |
weights_factor |
the dataframe which contains the different factor linked to the weights |
trait_data |
a vector of the data linked to the different factor |
randomization_number |
the number of random abundance matrix to generate |
aggregation_factor_name |
vector of factor name for the generation of random matrix |
statistics_factor_name |
vector of factor name for the computation of statistics for each generated matrix |
seed |
the seed of the pseudo random number generator |
abundance_file |
the path and name of the RDS file to load/save the dataframe which contains the observed data and the generated matrix |
weighted_moments_file |
the path and name of the RDS file to load/save the dataframe which contains the calculated moments |
stat_per_obs_file |
the path and name of the RDS file to load/save the dataframe which contains the statistics for each observed row regarding the random ones |
stat_per_rand_file |
the path and name of the RDS file to load/save the dataframe which contains the statistics for each random matrix generated |
stat_skr_param_file |
default=NULL You can provide the output to write the SKR statistics results to. |
regenerate_abundance_df |
boolean to specify if the abundance dataframe is computed again |
regenerate_weighted_moments_df |
boolean to specify if the weighted moments dataframe is computed again |
regenerate_stat_per_obs_df |
boolean to specify if the statistics per observation dataframe is computed again |
regenerate_stat_per_rand_df |
boolean to specify if the statistics per random matrix dataframe is computed again |
regenerate_stat_skr_df |
boolean to specify if the stats SKR dataframe is computed again |
significativity_threshold |
the significance threshold to consider that the observed value is in the randomized value |
lin_mod |
Indicates the type of linear model to use for (SKR): choose "lm" or "mblm" |
slope_distance |
slope of the theoretical distribution law (default: slope = 1 intercept = 1.86 skew-uniform distribution family) |
intercept_distance |
intercept of the theoretical distribution law (default: slope = 1 intercept = 1.86 skew-uniform distribution family) |
csv_tsv_load_parameters |
a list of parameters for each data structure we want to load. Each element must be named after the data structure we want to load. |
A list
of the 9 following named elements:
raw_abundance_df
filtered_weights
filtered_weights_factor
filtered_trait_data
abundance_df
weighted_moments
statistics_per_observation
stat_per_rand
ses_skr
output_path <- file.path(tempdir(), "outputs")
dir.create(output_path)
results <- TAD::launch_analysis_tad(
weights = TAD::AB[, 5:102],
weights_factor = TAD::AB[, c("Year", "Plot", "Treatment", "Bloc")],
trait_data = log(TAD::trait[["SLA"]]),
aggregation_factor_name = c("Year", "Bloc"),
statistics_factor_name = (statistics_factor_name <- c("Treatment")),
regenerate_abundance_df = TRUE,
regenerate_weighted_moments_df = TRUE,
regenerate_stat_per_obs_df = TRUE,
regenerate_stat_per_rand_df = TRUE,
weighted_moments_file = file.path(output_path, "weighted_moments.csv"),
stat_per_obs_file = file.path(output_path, "stat_per_obs.csv"),
stat_per_rand_file = file.path(output_path, "stat_per_rand.csv"),
stat_skr_param_file = file.path(output_path, "stat_skr_param.csv"),
randomization_number = 20,
seed = 1312,
significativity_threshold = c(0.05, 0.95),
lin_mod = "lm",
slope_distance = (
slope_distance <- TAD::CONSTANTS$SKEW_UNIFORM_SLOPE_DISTANCE
),
intercept_distance = (
intercept_distance <- TAD::CONSTANTS$SKEW_UNIFORM_INTERCEPT_DISTANCE
)
)
moments_graph <- TAD::moments_graph(
moments_df = results$weighted_moments,
statistics_per_observation = results$statistics_per_observation,
statistics_factor_name = statistics_factor_name,
statistics_factor_name_breaks = c("Mown_Unfertilized", "Mown_NPK"),
statistics_factor_name_col = c("#1A85FF", "#D41159"),
output_path = file.path(output_path, "moments_graph.jpeg"),
dpi = 100
)
skr_graph <- TAD::skr_graph(
moments_df = results$weighted_moments,
statistics_factor_name = statistics_factor_name,
statistics_factor_name_breaks = c("Mown_Unfertilized", "Mown_NPK"),
statistics_factor_name_col = c("#1A85FF", "#D41159"),
output_path = file.path(output_path, "skr_graph.jpeg"),
slope_distance = slope_distance,
intercept_distance = intercept_distance,
dpi = 100
)
skr_param_graph <- TAD::skr_param_graph(
skr_param = results$ses_skr,
statistics_factor_name = statistics_factor_name,
statistics_factor_name_breaks = c("Mown_Unfertilized", "Mown_NPK"),
statistics_factor_name_col = c("#1A85FF", "#D41159"),
slope_distance = slope_distance,
intercept_distance = intercept_distance,
save_skr_param_graph = file.path(output_path, "skr_param_graph.jpeg"),
dpi = 100
)
unlink(output_path, recursive = TRUE, force = TRUE)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.