TDAmapper: Analyze High-Dimensional Data Using Discrete Morse Theory

Share:

Topological Data Analysis using Mapper (discrete Morse theory). Generate a 1-dimensional simplicial complex from a filter function defined on the data: 1. Define a filter function (lens) on the data. 2. Perform clustering within within each level set and generate one node (vertex) for each cluster. 3. For each pair of clusters in adjacent level sets with a nonempty intersection, generate one edge between vertices. The function mapper1D uses a filter function with codomain R, while the the function mapper2D uses a filter function with codomain R^2.

Author
Paul Pearson [aut, cre, trl], Daniel Muellner [aut, ctb], Gurjeet Singh [aut, ctb]
Date of publication
2015-05-31 09:23:14
Maintainer
Paul Pearson <pearsonp@hope.edu>
License
GPL-3
Version
1.0
URLs

View on CRAN

Man pages

cluster_cutoff_at_first_empty_bin
cluster_cutoff_at_first_empty_bin function
mapper1D
mapper1D function
mapper2D
mapper2D function

Files in this package

TDAmapper
TDAmapper/NAMESPACE
TDAmapper/R
TDAmapper/R/mapper2D.R
TDAmapper/R/mapper1D.R
TDAmapper/R/cluster_cutoff_at_first_empty_bin.R
TDAmapper/README.md
TDAmapper/MD5
TDAmapper/DESCRIPTION
TDAmapper/LICENSE.note
TDAmapper/man
TDAmapper/man/mapper1D.Rd
TDAmapper/man/mapper2D.Rd
TDAmapper/man/cluster_cutoff_at_first_empty_bin.Rd