SOPC_TFM: Sparse Online Principal Component Analysis

View source: R/SOPC_TFM.R

SOPC_TFMR Documentation

Sparse Online Principal Component Analysis

Description

This function calculates various metrics for the Sparse Online Principal Component Analysis (SOPC) method. It estimates the factor loadings and uniquenesses while calculating mean squared errors and loss metrics for comparison with true values. Additionally, it computes the proportion of zero factor loadings in the estimated loadings matrix.

Usage

SOPC_TFM(data, m, p, gamma, eta, A, D)

Arguments

data

The data used in the SOPC analysis.

m

the number of common factors

p

the number of variables

gamma

Tuning parameter for the sparseness of the loadings matrix.

eta

Tuning parameter for the sparseness of the uniquenesses matrix.

A

The true A matrix.

D

The true D matrix.

Value

A list of metrics including:

Aso

Estimated factor loadings matrix obtained from the SOPC analysis.

Dso

Estimated uniquenesses vector obtained from the SOPC analysis.

MSEA

Mean squared error of the estimated factor loadings (Aso) compared to the true loadings (A).

MSED

Mean squared error of the estimated uniquenesses (Dso) compared to the true uniquenesses (D).

LSA

Loss metric for the estimated factor loadings (Aso), indicating the relative error compared to the true loadings (A).

LSD

Loss metric for the estimated uniquenesses (Dso), indicating the relative error compared to the true uniquenesses (D).

tauA

Proportion of zero factor loadings in the estimated loadings matrix (Aso), indicating the sparsity of the loadings.

Examples

library(MASS)
library(relliptical)
library(SOPC)

SOPC_MSEA <- c()
SOPC_MSED <- c()
SOPC_LSA <- c()
SOPC_LSD <- c()
SOPC_TAUA <- c()

p = 10; m = 5
n = 2000  # Set n to 2000
mu = t(matrix(rep(runif(p, 0, 1000), n), p, n))
mu0 = as.matrix(runif(m, 0))
sigma0 = diag(runif(m, 1))
F = matrix(mvrnorm(n, mu0, sigma0), nrow = n)
A = matrix(runif(p * m, -1, 1), nrow = p)

# Sampling from the Truncated Normal distribution
lower = c(rep(-0.5, p - 3), -5, -5, -Inf)
upper = c(rep(0.5, p - 3), 5, 5, Inf)
Sigma = as.matrix(diag(rep(runif(p, 0, 1))))
mut = runif(p, 0, 10)
trnor = rtelliptical(n, mut, Sigma, lower, upper, dist = "Normal")
epsilon = matrix(trnor, nrow = n)
D = Sigma

data = mu + F %*% t(A) + epsilon

Z = data.frame(SOPC_TFM(data, m = m, p = p, gamma = 0.1, eta = 0.8, A = A, D = D))
SOPC_MSEA = c(SOPC_MSEA, Z$MSEA)
SOPC_MSED = c(SOPC_MSED, Z$MSED)
SOPC_LSA = c(SOPC_LSA, Z$LSA)
SOPC_LSD = c(SOPC_LSD, Z$LSD)
SOPC_TAUA = c(SOPC_TAUA, Z$tauA)

# Ensure the data frame has the correct column structure, even with one value
data_F = data.frame(n = rep(n, length(SOPC_MSEA)), MSEA = SOPC_MSEA, MSED = SOPC_MSED,
 LSA = SOPC_LSA, LSD = SOPC_LSD, tauA = SOPC_TAUA)
data_F


TFM documentation built on April 16, 2025, 5:10 p.m.

Related to SOPC_TFM in TFM...