est_lambda | R Documentation |
Estimate the tuning parameter of the TFRE Lasso regression given the covariate matrix X.
est_lambda(X, alpha0 = 0.1, const_lambda = 1.01, times = 500)
X |
Input matrix, of dimension n_obs x n_vars; each row is an observation vector. |
alpha0 |
The level to estimate the tuning parameter. Default value is 0.1. See more details in "Details". |
const_lambda |
The constant to estimate the tuning parameter, should be greater than 1. Default value is 1.01. See more details in "Details". |
times |
The size of simulated samples to estimate the tuning parameter. Default value is 500. |
In TFRE Lasso regressions, the tuning parameter can be estimated independent of errors. In Wang et al. (2020), the following tuning parameter is suggested:
\lambda^* = const\_lambda * G^{-1}_{||\bm{S}_n||_\infty}(1-alpha0)
,
where \bm{S}_n = -2[n(n-1)]^{-1}\sum_{j=1}^n\bm{x}_j[2r_j-(n+1)]
, r_1,\ldots,r_n
follows the uniform distribution on the per-mutations of the integers \{1,\ldots,n\}
,
and G^{-1}_{||\bm{S}_n||_\infty}(1-alpha0)
denotes the (1-alpha0)
-quantile
of the distribution of ||\bm{S}_n||_\infty
.
The estimated tuning parameter of the TFRE Lasso regression given X.
Yunan Wu and Lan Wang
Maintainer:
Yunan Wu <yunan.wu@utdallas.edu>
Wang, L., Peng, B., Bradic, J., Li, R. and Wu, Y. (2020), A Tuning-free Robust and Efficient Approach to High-dimensional Regression, Journal of the American Statistical Association, 115:532, 1700-1714, \Sexpr[results=rd]{tools:::Rd_expr_doi("10.1080/01621459.2020.1840989")}.
TFRE
n <- 20; p <- 50
X <- matrix(rnorm(n*p),n)
est_lambda(X)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.