gsspFactorm | R Documentation |
sparse factor analysis to extract latent linear factor and estimate row-sparse and entry-wise-sparse loading matrix.
gsspFactorm(X, q=NULL, lambda1=nrow(X)^(1/4), lambda2=nrow(X)^(1/4))
X |
a |
q |
an integer between 1 and |
lambda1 |
a non-negative number, the row-sparse penalty parameter, default as |
lambda2 |
a non-negative number, the entry-sparse penalty parameter, default as |
return a list with class named fac
, including following components:
hH |
a |
sphB |
a |
hB |
a |
q |
an integer between 1 and |
propvar |
a positive number between 0 and 1, the explained propotion of cummulative variance by the |
egvalues |
a n-dimensional(n<=p) or p-dimensional(p<n) vector, the eigenvalues of sample covariance matrix. |
nothing
Liu Wei
Liu, W., Lin, H., Liu, J., & Zheng, S. (2020). Two-directional simultaneous inference for high-dimensional models. arXiv preprint arXiv:2012.11100.
factor
, Factorm
dat <- gendata_Fac(n = 300, p = 500) res <- gsspFactorm(dat$X) ccorFun(res$hH, dat$H0) # the smallest canonical correlation ## comparison of l2 norm oldpar <- par(mar = c(5, 5, 2, 2), mfrow = c(1, 2)) plot(rowSums(dat$B0^2), type='o', ylab='l2B', main='True') l2B <- rowSums(res$sphB^2) plot(l2B, type='o', main='Est.') Bind <- ifelse(dat$B0==0, 0, 1) hBind <- ifelse(res$sphB==0, 0, 1) ## Select good penalty parameters dat <- gendata_Fac(n = 300, p = 200) res <- gsspFactorm(dat$X, lambda1=0.04*nrow(dat$X)^(1/4) ,lambda2=1*nrow(dat$X)^(1/4)) ccorFun(res$hH, dat$H0) # the smallest canonical correlation ## comparison of l2 norm plot(rowSums(dat$B0^2), type='o', ylab='l2B', main='True') l2B <- rowSums(res$sphB^2) plot(l2B, type='o', main='Est.') ## comparison of structure of loading matrix Bind <- ifelse(dat$B0==0, 0, 1) hBind <- ifelse(res$sphB==0, 0, 1) par(oldpar)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.