TestDataImputation: Missing Item Responses Imputation for Test and Assessment Data

Functions for imputing missing item responses for dichotomous and polytomous test and assessment data. This package enables missing imputation methods that are suitable for test and assessment data, including: listwise (LW) deletion (see De Ayala et al. 2001 <doi:10.1111/j.1745-3984.2001.tb01124.x>), treating as incorrect (IN, see Lord, 1974 <doi: 10.1111/j.1745-3984.1974.tb00996.x>; Mislevy & Wu, 1996 <doi: 10.1002/j.2333-8504.1996.tb01708.x>; Pohl et al., 2014 <doi: 10.1177/0013164413504926>), person mean imputation (PM), item mean imputation (IM), two-way (TW) and response function (RF) imputation, (see Sijtsma & van der Ark, 2003 <doi: 10.1207/s15327906mbr3804_4>), logistic regression (LR) imputation, predictive mean matching (PMM), and expectation–maximization (EM) imputation (see Finch, 2008 <doi: 10.1111/j.1745-3984.2008.00062.x>).

Getting started

Package details

AuthorShenghai Dai [aut, cre], Xiaolin Wang [aut], Dubravka Svetina [aut]
MaintainerShenghai Dai <s.dai@wsu.edu>
LicenseGPL (>= 2)
Version2.3
Package repositoryView on CRAN
Installation Install the latest version of this package by entering the following in R:
install.packages("TestDataImputation")

Try the TestDataImputation package in your browser

Any scripts or data that you put into this service are public.

TestDataImputation documentation built on Oct. 19, 2021, 1:07 a.m.