TestDataImputation: Missing Item Responses Imputation for Test and Assessment Data

Functions for imputing missing item responses for dichotomous and polytomous test and assessment data. This package enables missing imputation methods that are suitable for test and assessment data, including: listwise (LW) deletion, treating as incorrect (IN), person mean imputation (PM), item mean imputation (IM), two-way imputation (TW), logistic regression imputation (LR), and EM imputation.

AuthorShenghai Dai [aut, cre], Xiaolin Wang [aut], Dubravka Svetina [aut]
Date of publication2016-08-11 18:40:22
MaintainerShenghai Dai <dais@indiana.edu>
LicenseGPL (>= 2)
Version1.0

View on CRAN

Files

TestDataImputation
TestDataImputation/NAMESPACE
TestDataImputation/data
TestDataImputation/data/test.data.rda
TestDataImputation/R
TestDataImputation/R/TwoWay.r
TestDataImputation/R/EMimpute.r
TestDataImputation/R/TreatIncorrect.r
TestDataImputation/R/LogisticReg.r
TestDataImputation/R/Listwise.r
TestDataImputation/R/ItemMean.r
TestDataImputation/R/PersonMean.r
TestDataImputation/R/ImputeTestData.r
TestDataImputation/MD5
TestDataImputation/DESCRIPTION
TestDataImputation/man
TestDataImputation/man/test.data.Rd TestDataImputation/man/PersonMean.Rd TestDataImputation/man/Listwise.Rd TestDataImputation/man/TreatIncorrect.Rd TestDataImputation/man/ItemMean.Rd TestDataImputation/man/LogsticReg.Rd TestDataImputation/man/Twoway.Rd TestDataImputation/man/ImputeTestData.Rd TestDataImputation/man/EMimpute.Rd

Questions? Problems? Suggestions? or email at ian@mutexlabs.com.

Please suggest features or report bugs with the GitHub issue tracker.

All documentation is copyright its authors; we didn't write any of that.