Nothing
## ----eval=FALSE---------------------------------------------------------------
# devtools::install_github("clarkevansteenderen/ThermalSampleR")
## ----eval=FALSE---------------------------------------------------------------
# library(ThermalSampleR)
## ----eval=FALSE---------------------------------------------------------------
# shiny::runUrl("https://github.com/clarkevansteenderen/ThermalSampleR_Shiny/archive/main.tar.gz")
## -----------------------------------------------------------------------------
head(ThermalSampleR::coreid_data)
## ----eval=FALSE---------------------------------------------------------------
# # Set a seed to make the results reproducible, for illustrative purposes.
# set.seed(2012)
#
# # Perform simulations
# bt_one = boot_one(
# # Which dataframe does the data come from?
# data = coreid_data,
# # Provide the column name containing the taxon ID
# groups_col = col,
# # Provide the name of the taxon to be tested
# groups_which = "Catorhintha schaffneri_APM",
# # Provide the name of the column containing the response variable (e.g CTmin data)
# response = response,
# # Maximum sample sample to extrapolate to
# n_max = 49,
# # How many bootstrap resamples should be drawn?
# iter = 299)
# dplyr::glimpse(bt_one)
## ----eval=FALSE---------------------------------------------------------------
# plot_one_group(
# # Variable containing the output from running `boot_one` function
# x = bt_one,
# # Minimum sample size to plot
# n_min = 3,
# # Actual size of your existing dataset
# n_max = 15,
# # Colour for your experimental data
# colour_exp = "forestgreen",
# # Colour for the extrapolated predictions
# colour_extrap = "orange",
# # Position of the legend
# legend.position = "right",
# # Change the degree of shading on the graph
# alpha_val = 0.25)
## ----eval=FALSE---------------------------------------------------------------
# # Set a seed to make the results reproducible, for illustrative purposes.
# set.seed(2012)
#
# # Perform simulations
# bt_two <- boot_two(
# # Which dataframe does the data come from?
# data = coreid_data,
# # Provide the column name containing the taxon ID
# groups_col = col,
# # Provide the name of the column containing the response variable (e.g CTmin data)
# response = response,
# # Provide the name of the first taxon to be compared
# group1 = "Catorhintha schaffneri_APM",
# # Provide the name of the second taxon to be compared
# group2 = "Catorhintha schaffneri_NPM",
# # Maximum sample sample to extrapolate to
# n_max = 49,
# # How many bootstrap resamples should be drawn?
# iter = 299)
# dplyr::glimpse(bt_two)
## ----eval=FALSE---------------------------------------------------------------
# plot_two_groups(
# # Variable containing the output from running `boot_two` function
# x = bt_two,
# # Minimum sample size to plot
# n_min = 3,
# # Actual size of your existing dataset
# n_max = 30,
# # Colour for your experimental data
# colour_exp = "blue",
# # Colour for the extrapolated predictions
# colour_extrap = "red",
# # Position of the legend
# legend.position = "right",
# # Change the degree of shading on the graph
# alpha_val = 0.25)
## ----eval=FALSE---------------------------------------------------------------
# tte = equiv_tost(
# # Which dataframe does the data come from?
# data = coreid_data,
# # Provide the column name containing the taxon ID
# groups_col = col,
# # Provide the name of the taxon to be tested
# groups_which = "Catorhintha schaffneri_APM",
# # Provide the name of the column containing the response variable (e.g CTmin data)
# response = response,
# # Define the skewness parameters
# skews = c(1,10),
# # Define the equivalence of subsets to full population CT estimate (unit = degree Celcius)
# equiv_margin = 1,
# # Size of the population to sample (will test subsamples of size pop_n - x against pop_n for equivalence). Defaults to population size = 30
# pop_n = 30
# )
#
# # Inspect ouput
# tte
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.