View source: R/utils-aic-normal.R
util_normal_aic | R Documentation |
This function estimates the parameters of a normal distribution from the provided data using maximum likelihood estimation, and then calculates the AIC value based on the fitted distribution.
util_normal_aic(.x)
.x |
A numeric vector containing the data to be fitted to a normal distribution. |
This function calculates the Akaike Information Criterion (AIC) for a normal distribution fitted to the provided data.
The AIC value calculated based on the fitted normal distribution to the provided data.
Steven P. Sanderson II, MPH
Other Utility:
check_duplicate_rows()
,
convert_to_ts()
,
quantile_normalize()
,
tidy_mcmc_sampling()
,
util_beta_aic()
,
util_binomial_aic()
,
util_cauchy_aic()
,
util_chisq_aic()
,
util_exponential_aic()
,
util_f_aic()
,
util_gamma_aic()
,
util_generalized_beta_aic()
,
util_generalized_pareto_aic()
,
util_geometric_aic()
,
util_hypergeometric_aic()
,
util_inverse_burr_aic()
,
util_inverse_pareto_aic()
,
util_inverse_weibull_aic()
,
util_logistic_aic()
,
util_lognormal_aic()
,
util_negative_binomial_aic()
,
util_paralogistic_aic()
,
util_pareto1_aic()
,
util_pareto_aic()
,
util_poisson_aic()
,
util_t_aic()
,
util_triangular_aic()
,
util_uniform_aic()
,
util_weibull_aic()
,
util_zero_truncated_binomial_aic()
,
util_zero_truncated_geometric_aic()
,
util_zero_truncated_negative_binomial_aic()
,
util_zero_truncated_poisson_aic()
# Example 1: Calculate AIC for a sample dataset
set.seed(123)
data <- rnorm(30)
util_normal_aic(data)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.