| util_t_aic | R Documentation |
This function estimates the parameters of a t distribution from the provided data using maximum likelihood estimation, and then calculates the AIC value based on the fitted distribution.
util_t_aic(.x)
.x |
A numeric vector containing the data to be fitted to a t distribution. |
This function calculates the Akaike Information Criterion (AIC) for a t distribution fitted to the provided data.
This function fits a t distribution to the input data using maximum likelihood estimation and then computes the Akaike Information Criterion (AIC) based on the fitted distribution.
The AIC value calculated based on the fitted t distribution to the provided data.
Steven P. Sanderson II, MPH
rt for generating t-distributed data,
optim for optimization.
Other Utility:
check_duplicate_rows(),
convert_to_ts(),
quantile_normalize(),
tidy_mcmc_sampling(),
util_beta_aic(),
util_binomial_aic(),
util_cauchy_aic(),
util_chisq_aic(),
util_exponential_aic(),
util_f_aic(),
util_gamma_aic(),
util_generalized_beta_aic(),
util_generalized_pareto_aic(),
util_geometric_aic(),
util_hypergeometric_aic(),
util_inverse_burr_aic(),
util_inverse_pareto_aic(),
util_inverse_weibull_aic(),
util_logistic_aic(),
util_lognormal_aic(),
util_negative_binomial_aic(),
util_normal_aic(),
util_paralogistic_aic(),
util_pareto1_aic(),
util_pareto_aic(),
util_poisson_aic(),
util_triangular_aic(),
util_uniform_aic(),
util_weibull_aic(),
util_zero_truncated_binomial_aic(),
util_zero_truncated_geometric_aic(),
util_zero_truncated_negative_binomial_aic(),
util_zero_truncated_poisson_aic()
# Generate t-distributed data
set.seed(123)
x <- rt(100, df = 5, ncp = 0.5)
# Calculate AIC for the generated data
util_t_aic(x)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.