View source: R/utils-aic-ztpoisson.R
| util_zero_truncated_poisson_aic | R Documentation | 
This function estimates the parameters of a zero-truncated poisson distribution from the provided data using maximum likelihood estimation, and then calculates the AIC value based on the fitted distribution.
util_zero_truncated_poisson_aic(.x)
| .x | A numeric vector containing the data to be fitted to a zero-truncated poisson distribution. | 
This function calculates the Akaike Information Criterion (AIC) for a zero-truncated poisson distribution fitted to the provided data.
The AIC value calculated based on the fitted zero-truncated poisson distribution to the provided data.
Steven P. Sanderson II, MPH
Other Utility: 
check_duplicate_rows(),
convert_to_ts(),
quantile_normalize(),
tidy_mcmc_sampling(),
util_beta_aic(),
util_binomial_aic(),
util_cauchy_aic(),
util_chisq_aic(),
util_exponential_aic(),
util_f_aic(),
util_gamma_aic(),
util_generalized_beta_aic(),
util_generalized_pareto_aic(),
util_geometric_aic(),
util_hypergeometric_aic(),
util_inverse_burr_aic(),
util_inverse_pareto_aic(),
util_inverse_weibull_aic(),
util_logistic_aic(),
util_lognormal_aic(),
util_negative_binomial_aic(),
util_normal_aic(),
util_paralogistic_aic(),
util_pareto1_aic(),
util_pareto_aic(),
util_poisson_aic(),
util_t_aic(),
util_triangular_aic(),
util_uniform_aic(),
util_weibull_aic(),
util_zero_truncated_binomial_aic(),
util_zero_truncated_geometric_aic(),
util_zero_truncated_negative_binomial_aic()
library(actuar)
# Example 1: Calculate AIC for a sample dataset
set.seed(123)
x <- rztpois(30, lambda = 3)
util_zero_truncated_poisson_aic(x)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.