| TrendTM | R Documentation | 
It is the main function. It performs the factorization for a selected rank and a temporal structure with a selected tau if the selection is requested otherwise it is fixed
TrendTM(
  Data_Series,
  k_select = FALSE,
  k_max = 20,
  struct_temp = "none",
  tau_select = FALSE,
  tau_max = floor(n/2),
  type_soft = "als"
)
| Data_Series | the data matrix with d rows and n columns containing the d temporal series with size n. | 
| k_select | a boolean indicating if the rank of the matrix Data_Series will be selected. Default is FALSE. | 
| k_max | the fixed rank of Data_Series if  | 
| struct_temp | a name indicating the temporal structure. Could be  | 
| tau_select | a boolean indicating if the parameter tau will be selected. This can be possible only when  | 
| tau_max | the fixed value for tau if  | 
| type_soft | the option  | 
The penalty constant(s) is(are) calibrated using the slope heuristic from package capushe. We adapt this heuristic as follows: the final dimension is the one correspind to the majority of the selected dimension for the considered different penalties.
A list containing
k_est the selected rank if k_select==TRUE or k_max if k_select==FALSE.
tau_est the selected tau if tau_select==TRUE or tau_max if tau_select==FALSE.
U_est the component U of the decomposition of the final estimator M_est.
V_est the component V of the decomposition of the final estimator M_est.
M_est the estimation of M.
contrast the Frobenius norm of Data_Series-M_est. This is a value when k_select==FALSE and tau_select==FALSE, a vector when k_select==TRUE or tau_select==TRUE, and a matrix when k_select==TRUE and tau_select==TRUE with k_max rows and tau_max columns.
data(Data_Series)
result <- TrendTM(Data_Series, k_max = 3)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.