Nothing
Code
result <- weight_func(sw_data = data, switch_n_cov = ~1, switch_d_cov = ~ X1 +
X2, use_switch_weights = TRUE, use_censor_weights = TRUE, cense = "C",
pool_cense_d = FALSE, pool_cense_n = FALSE, cense_d_cov = ~ X1 + X2 + X3 + X4 +
age_s, cense_n_cov = ~ X3 + X4, save_weight_models = FALSE, data_dir = save_dir,
glm_function = "parglm", control = parglm.control(nthreads = 2, method = "FAST"))
Message
P(treatment = 1 | previous treatment = 0) for denominator
Output
Call:
glm(formula = treatment ~ X1 + X2, family = binomial(link = "logit"),
data = data, control = list(epsilon = 1e-08, maxit = 25,
trace = FALSE, nthreads = 2, block_size = NULL, method = "FAST"),
method = parglm::parglm.fit, singular.ok = FALSE)
Coefficients:
Estimate Std. Error z value Pr(>|z|)
(Intercept) -0.52633 0.05629 -9.351 < 2e-16 ***
X1 0.35856 0.07807 4.593 4.37e-06 ***
X2 0.42935 0.04032 10.648 < 2e-16 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
(Dispersion parameter for binomial family taken to be 1)
Null deviance: 3870 on 2848 degrees of freedom
Residual deviance: 3731 on 2846 degrees of freedom
AIC: 3737
Number of Fisher Scoring iterations: 4
Message
P(treatment = 1 | previous treatment = 0) for numerator
Output
Call:
glm(formula = treatment ~ 1, family = binomial(link = "logit"),
data = data, control = list(epsilon = 1e-08, maxit = 25,
trace = FALSE, nthreads = 2, block_size = NULL, method = "FAST"),
method = parglm::parglm.fit, singular.ok = FALSE)
Coefficients:
Estimate Std. Error z value Pr(>|z|)
(Intercept) -0.3366 0.0380 -8.857 <2e-16 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
(Dispersion parameter for binomial family taken to be 1)
Null deviance: 3870 on 2848 degrees of freedom
Residual deviance: 3870 on 2848 degrees of freedom
AIC: 3872
Number of Fisher Scoring iterations: 4
Message
P(treatment = 1 | previous treatment = 1) for denominator
Output
Call:
glm(formula = treatment ~ X1 + X2, family = binomial(link = "logit"),
data = data, control = list(epsilon = 1e-08, maxit = 25,
trace = FALSE, nthreads = 2, block_size = NULL, method = "FAST"),
method = parglm::parglm.fit, singular.ok = FALSE)
Coefficients:
Estimate Std. Error z value Pr(>|z|)
(Intercept) 0.89795 0.05905 15.208 < 2e-16 ***
X1 0.34311 0.11198 3.064 0.00218 **
X2 0.44843 0.04888 9.174 < 2e-16 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
(Dispersion parameter for binomial family taken to be 1)
Null deviance: 2649.6 on 2153 degrees of freedom
Residual deviance: 2549.5 on 2151 degrees of freedom
AIC: 2555.5
Number of Fisher Scoring iterations: 4
Message
P(treatment = 1 | previous treatment = 1) for numerator
Output
Call:
glm(formula = treatment ~ 1, family = binomial(link = "logit"),
data = data, control = list(epsilon = 1e-08, maxit = 25,
trace = FALSE, nthreads = 2, block_size = NULL, method = "FAST"),
method = parglm::parglm.fit, singular.ok = FALSE)
Coefficients:
Estimate Std. Error z value Pr(>|z|)
(Intercept) 0.8235 0.0468 17.6 <2e-16 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
(Dispersion parameter for binomial family taken to be 1)
Null deviance: 2649.6 on 2153 degrees of freedom
Residual deviance: 2649.6 on 2153 degrees of freedom
AIC: 2651.6
Number of Fisher Scoring iterations: 4
Message
Model for P(cense = 0 | X, previous treatment = 0) for denominator
Output
Call:
glm(formula = 1 - C ~ X1 + X2 + X3 + X4 + age_s, family = binomial(link = "logit"),
data = data, control = list(epsilon = 1e-08, maxit = 25,
trace = FALSE, nthreads = 2, block_size = NULL, method = "FAST"),
method = parglm::parglm.fit, singular.ok = FALSE)
Coefficients:
Estimate Std. Error z value Pr(>|z|)
(Intercept) 0.90004 0.09634 9.342 < 2e-16 ***
X1 0.58887 0.11288 5.217 1.82e-07 ***
X2 -0.46469 0.05660 -8.210 < 2e-16 ***
X3 0.32342 0.11178 2.893 0.00381 **
X4 -0.25226 0.05627 -4.483 7.35e-06 ***
age_s 0.97304 0.06783 14.346 < 2e-16 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
(Dispersion parameter for binomial family taken to be 1)
Null deviance: 2465.6 on 2848 degrees of freedom
Residual deviance: 2105.0 on 2843 degrees of freedom
AIC: 2117
Number of Fisher Scoring iterations: 5
Message
Model for P(cense = 0 | X, previous treatment = 1) for denominator
Output
Call:
glm(formula = 1 - C ~ X1 + X2 + X3 + X4 + age_s, family = binomial(link = "logit"),
data = data, control = list(epsilon = 1e-08, maxit = 25,
trace = FALSE, nthreads = 2, block_size = NULL, method = "FAST"),
method = parglm::parglm.fit, singular.ok = FALSE)
Coefficients:
Estimate Std. Error z value Pr(>|z|)
(Intercept) 1.78647 0.13213 13.521 < 2e-16 ***
X1 0.33495 0.20307 1.649 0.0991 .
X2 -0.59679 0.08589 -6.948 3.7e-12 ***
X3 0.36771 0.16983 2.165 0.0304 *
X4 -0.22223 0.09511 -2.336 0.0195 *
age_s 1.14576 0.11569 9.904 < 2e-16 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
(Dispersion parameter for binomial family taken to be 1)
Null deviance: 1179.7 on 2153 degrees of freedom
Residual deviance: 1011.3 on 2148 degrees of freedom
AIC: 1023.3
Number of Fisher Scoring iterations: 6
Message
Model for P(cense = 0 | X, previous treatment = 0) for numerator
Output
Call:
glm(formula = 1 - C ~ X3 + X4, family = binomial(link = "logit"),
data = data, control = list(epsilon = 1e-08, maxit = 25,
trace = FALSE, nthreads = 2, block_size = NULL, method = "FAST"),
method = parglm::parglm.fit, singular.ok = FALSE)
Coefficients:
Estimate Std. Error z value Pr(>|z|)
(Intercept) 1.51989 0.07547 20.139 < 2e-16 ***
X3 0.20212 0.10398 1.944 0.0519 .
X4 -0.24079 0.05398 -4.461 8.17e-06 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
(Dispersion parameter for binomial family taken to be 1)
Null deviance: 2465.6 on 2848 degrees of freedom
Residual deviance: 2442.8 on 2846 degrees of freedom
AIC: 2448.8
Number of Fisher Scoring iterations: 4
Message
Model for P(cense = 0 | X, previous treatment = 1) for numerator
Output
Call:
glm(formula = 1 - C ~ X3 + X4, family = binomial(link = "logit"),
data = data, control = list(epsilon = 1e-08, maxit = 25,
trace = FALSE, nthreads = 2, block_size = NULL, method = "FAST"),
method = parglm::parglm.fit, singular.ok = FALSE)
Coefficients:
Estimate Std. Error z value Pr(>|z|)
(Intercept) 2.35075 0.11680 20.126 <2e-16 ***
X3 0.30635 0.16109 1.902 0.0572 .
X4 -0.10257 0.09121 -1.125 0.2608
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
(Dispersion parameter for binomial family taken to be 1)
Null deviance: 1179.7 on 2153 degrees of freedom
Residual deviance: 1175.0 on 2151 degrees of freedom
AIC: 1181
Number of Fisher Scoring iterations: 5
Code
for (i in result$switch_models) print(i, digits = 4)
Output
P(treatment = 1 | previous treatment = 0) for denominator
term estimate std.error statistic p.value
(Intercept) -0.1657 0.06642 -2.495 1.261e-02
X1 0.3719 0.07957 4.674 2.960e-06
X2 0.4548 0.04131 11.008 3.505e-28
time_on_regime -0.2686 0.02750 -9.768 1.538e-22
null.deviance df.null logLik AIC BIC deviance df.residual nobs
3870 2848 -1810 3628 3652 3620 2845 2849
P(treatment = 1 | previous treatment = 0) for numerator
term estimate std.error statistic p.value
(Intercept) 0.005973 0.05142 0.1162 9.075e-01
time_on_regime -0.250221 0.02676 -9.3493 8.819e-21
null.deviance df.null logLik AIC BIC deviance df.residual nobs
3870 2848 -1885 3773 3785 3769 2847 2849
P(treatment = 1 | previous treatment = 1) for denominator
term estimate std.error statistic p.value
(Intercept) 0.6281 0.08932 7.032 2.036e-12
X1 0.3559 0.11244 3.165 1.550e-03
X2 0.4496 0.04903 9.170 4.731e-20
time_on_regime 0.1130 0.02898 3.901 9.591e-05
null.deviance df.null logLik AIC BIC deviance df.residual nobs
2650 2153 -1267 2541 2564 2533 2150 2154
P(treatment = 1 | previous treatment = 1) for numerator
term estimate std.error statistic p.value
(Intercept) 0.5673 0.08024 7.070 1.551e-12
time_on_regime 0.1086 0.02845 3.818 1.343e-04
null.deviance df.null logLik AIC BIC deviance df.residual nobs
2650 2153 -1317 2638 2650 2634 2152 2154
Code
for (i in result$censor_models) print(i, digits = 4)
Code
lapply(result$switch_models, print, digits = 4)
Output
P(treatment = 1 | previous treatment = 0) for denominator
term estimate std.error statistic p.value
(Intercept) -0.5263 0.05629 -9.351 8.713e-21
X1 0.3586 0.07807 4.593 4.369e-06
X2 0.4294 0.04032 10.648 1.787e-26
null.deviance df.null logLik AIC BIC deviance df.residual nobs
3870 2848 -1865 3737 3755 3731 2846 2849
P(treatment = 1 | previous treatment = 0) for numerator
term estimate std.error statistic p.value
(Intercept) -0.3366 0.038 -8.857 8.201e-19
null.deviance df.null logLik AIC BIC deviance df.residual nobs
3870 2848 -1935 3872 3878 3870 2848 2849
P(treatment = 1 | previous treatment = 1) for denominator
term estimate std.error statistic p.value
(Intercept) 0.8979 0.05905 15.208 3.149e-52
X1 0.3431 0.11198 3.064 2.183e-03
X2 0.4484 0.04888 9.174 4.562e-20
null.deviance df.null logLik AIC BIC deviance df.residual nobs
2650 2153 -1275 2556 2573 2550 2151 2154
P(treatment = 1 | previous treatment = 1) for numerator
term estimate std.error statistic p.value
(Intercept) 0.8235 0.0468 17.6 2.571e-69
null.deviance df.null logLik AIC BIC deviance df.residual nobs
2650 2153 -1325 2652 2657 2650 2153 2154
$switch_d0
NULL
$switch_n0
NULL
$switch_d1
NULL
$switch_n1
NULL
Code
lapply(result$censor_models, print, digits = 4)
Output
Model for P(cense = 0 | X) for denominator
term estimate std.error statistic p.value
(Intercept) 1.3102 0.07502 17.465 2.640e-68
X1 0.3612 0.09673 3.734 1.886e-04
X2 -0.5369 0.04672 -11.492 1.446e-30
X3 0.3147 0.09232 3.409 6.530e-04
X4 -0.1317 0.04615 -2.854 4.320e-03
age_s 1.0445 0.05846 17.866 2.177e-71
null.deviance df.null logLik AIC BIC deviance df.residual nobs
3718 5002 -1594 3200 3239 3188 4997 5003
Model for P(cense = 0 | X) for numerator
term estimate std.error statistic p.value
(Intercept) 1.85647 0.06132 30.277 2.290e-201
X3 0.21535 0.08648 2.490 1.277e-02
X4 -0.05953 0.04371 -1.362 1.732e-01
null.deviance df.null logLik AIC BIC deviance df.residual nobs
3718 5002 -1855 3716 3735 3710 5000 5003
$cens_pool_d
NULL
$cens_pool_n
NULL
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.